Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 27;66(Pt 3):o712. doi: 10.1107/S1600536810006859

(3,6-Dimeth­oxy-2-naphth­yl)(4-fluoro­benzo­yl)methanone

Shoji Watanabe a, Toyokazu Muto a, Atsushi Nagasawa a, Akiko Okamoto a, Noriyuki Yonezawa a,*
PMCID: PMC2983725  PMID: 21580450

Abstract

In the title compound, C19H15FO3, the dihedral angle between the naphthalene ring system and the benzene ring is 62.93 (5)°. The bridging carbonyl C—C(=O)—C plane makes dihedral angles of 45.55 (6) and 28.62 (7)°, respectively, with the naphthalene ring system and the benzene ring. Weak inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions stabilize the crystal packing.

Related literature

For general background to the regioselective formation of peri-aroylnaphthalene compounds, see: Okamoto & Yonezawa (2009). For related structures, see: Hijikata et al. (2010); Mitsui et al. (2008); Nakaema et al. (2007, 2008); Watanabe et al. (2010a ,b ).graphic file with name e-66-0o712-scheme1.jpg

Experimental

Crystal data

  • C19H15FO3

  • M r = 310.31

  • Monoclinic, Inline graphic

  • a = 8.3690 (2) Å

  • b = 19.7603 (5) Å

  • c = 9.3897 (2) Å

  • β = 105.126 (2)°

  • V = 1499.01 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.84 mm−1

  • T = 193 K

  • 0.55 × 0.50 × 0.45 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.657, T max = 0.705

  • 26258 measured reflections

  • 2738 independent reflections

  • 2530 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.090

  • S = 1.02

  • 2738 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810006859/bt5198sup1.cif

e-66-0o712-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006859/bt5198Isup2.hkl

e-66-0o712-Isup2.hkl (134.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C5/C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18BCg1i 0.98 2.85 3.7479 (14) 152
C17—H17⋯O1ii 0.95 2.55 3.2930 (16) 136
C18—H18A⋯O3iii 0.98 2.39 3.3603 (16) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors would express their gratitude to professor Keiichi Noguchi for his technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

supplementary crystallographic information

Comment

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twisted almost perpendicularly but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings.

Recently, we reported the structures of 1,8-diaroyl-2,7-dimethoxynaphthalenes, i. e., 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007), bis(4-bromobenzoyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe et al., 2010a). In addition, the crystal structural analysis of 1-aroyl-2,7-dimethoxynaphthalenes, i. e., methyl 4-(2,7-dimethoxy-1-naphthoyl)benzoate (Hijikata et al., 2010) and 1-(4-nitorobenzoyl)-2,7-dimethoxynaphthalene (Watanabe et al. 2010b), also has revealed essentially the same non-coplanar structure as the 1,8-diaroylated naphthalenes.

Furthermore, the structure of 3-aroyl-2,7-dimetoxynaphthalenes such as 2-(4-chlorobenzoyl)-3,6-dimethoxynaphthalene (Nakaema et al., 2008), which are generally regarded to be thermodynamically more stable than the corresponding 1-positioned isomeric molecules, 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui et al., 2008), has been also studied. As a part of our ongoing work on the formation reaction and the structure of the aroylated naphthalene derivatives, the synthesis and crystal structure of (I), a 3-monoaroylnaphthalene bearing fluoro group, is discussed in this report. (I) was prepared by electrophilic aromatic aroylation reaction of 2,7-dimethoxynaphthalene with 4-fluorobenzoic acid.

An ORTEPIII (Burnett & Johnson, 1996) plot of (I) is displayed in Fig. 1. The 4-fluorophenyl group is twisted away from the attached naphthalene ring. The dihedral angle between the best planes of the fluorophenyl ring (C12—C17) and the naphthalene ring (C1—C10) is 62.93 (5)°. The bridging carbonyl plane (O1—C11—C3—C12) makes relatively large dihedral angle of 45.55 (6)° with the naphthalene ring (C1—C10) [C4—C3—C11—O1 torsion angle = 43.90 (17)°], whereas it makes rather small one of 28.62 (7)° with 4-fluorophenyl ring (C12—C17) [O1—C11—C12—C17 torsion angle = 28.69 (18)°].

Molecules are linked by C—H···π interactions (Fig. 2). The methyl group acts as an hydrogen-bond donor and π system of the naphthalene ring [C1—C5/C10 ring (with centroid Cg1)] of an adjacent molecule acts as an accepter (C18—H18B···π).

The crystal packing is additionally stabilized by two types of intermolecular weak C—H···O hydrogen bondings: One is between the aromatic hydrogen (H17) at meta position to the F group, and the carbonyl oxygen (O1) (Fig.3, Table 1). The other is between an hydrogen (H18A) of the 2-methoxy group which is situated adjacent to the fluorophenyl group, and the ethereal oxygen (O3) of the 7-methoxy group in a neighboring molecule .

Experimental

The title compound was prepared by treatment of a mixture of 2,7-dimethoxynaphthalene (0.20 mmol) and 4-fluoroobenzoic acid (0.21 mmol) with phosphorus pentoxide–methanesulfonic acid mixture (P2O5–MsOH [1/10 w/w]; 0.44 ml) at 60°C for 24 hours followed by a typical work-up procedure (30% yield; Okamoto & Yonezawa, 2009). Colorless block single crystals suitable for X-ray diffraction were obtained by recrystallization from chloroform.

Refinement

All the H atoms were found in difference maps and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), with the atom-labeling scheme and displacement ellipsoids drawn at the 50 % probability level.

Fig. 2.

Fig. 2.

C—H···π interactions (green dotted lines).

Fig. 3.

Fig. 3.

Two types of intermolecular weak C—H···O interactions (blue dotted lines).

Crystal data

C19H15FO3 F(000) = 648
Mr = 310.31 Dx = 1.375 Mg m3
Monoclinic, P21/c Melting point = 409.7–410.3 K
Hall symbol: -P 2ybc Cu Kα radiation, λ = 1.54187 Å
a = 8.3690 (2) Å Cell parameters from 20173 reflections
b = 19.7603 (5) Å θ = 4.5–68.2°
c = 9.3897 (2) Å µ = 0.84 mm1
β = 105.126 (2)° T = 193 K
V = 1499.01 (6) Å3 Block, colorless
Z = 4 0.55 × 0.50 × 0.45 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 2738 independent reflections
Radiation source: fine-focus sealed tube 2530 reflections with I > 2σ(I)
graphite Rint = 0.023
Detector resolution: 10.00 pixels mm-1 θmax = 68.2°, θmin = 4.5°
ω scans h = −10→9
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −23→23
Tmin = 0.657, Tmax = 0.705 l = −11→11
26258 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.3826P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
2738 reflections Δρmax = 0.20 e Å3
211 parameters Δρmin = −0.11 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0068 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.23655 (12) 0.05261 (4) −0.47975 (8) 0.0590 (3)
O1 0.24071 (11) 0.01533 (5) 0.18556 (10) 0.0455 (2)
O2 0.27326 (11) 0.19750 (4) 0.05828 (9) 0.0398 (2)
O3 0.94318 (11) 0.28084 (5) 0.70653 (10) 0.0440 (2)
C1 0.49935 (15) 0.22971 (6) 0.26543 (13) 0.0323 (3)
H1 0.4904 0.2759 0.2362 0.039*
C2 0.39672 (14) 0.18266 (6) 0.18062 (12) 0.0320 (3)
C3 0.41037 (14) 0.11285 (6) 0.22130 (12) 0.0324 (3)
C4 0.52148 (14) 0.09433 (6) 0.35119 (13) 0.0336 (3)
H4 0.5262 0.0483 0.3813 0.040*
C5 0.62836 (14) 0.14138 (6) 0.44084 (12) 0.0318 (3)
C6 0.74594 (15) 0.12300 (6) 0.57403 (13) 0.0365 (3)
H6 0.7542 0.0771 0.6052 0.044*
C7 0.84681 (15) 0.17022 (6) 0.65743 (13) 0.0384 (3)
H7 0.9247 0.1571 0.7461 0.046*
C8 0.83613 (14) 0.23878 (6) 0.61265 (13) 0.0349 (3)
C9 0.72528 (14) 0.25877 (6) 0.48456 (13) 0.0329 (3)
H9 0.7199 0.3049 0.4551 0.039*
C10 0.61869 (14) 0.21041 (6) 0.39610 (12) 0.0306 (3)
C11 0.30651 (14) 0.05923 (6) 0.12869 (13) 0.0342 (3)
C12 0.29002 (14) 0.05826 (6) −0.03341 (13) 0.0325 (3)
C13 0.41406 (15) 0.08347 (6) −0.09276 (14) 0.0377 (3)
H13 0.5108 0.1027 −0.0294 0.045*
C14 0.39778 (17) 0.08070 (6) −0.24310 (15) 0.0428 (3)
H14 0.4831 0.0969 −0.2839 0.051*
C15 0.25461 (17) 0.05384 (6) −0.33183 (13) 0.0409 (3)
C16 0.13017 (16) 0.02778 (7) −0.27807 (14) 0.0420 (3)
H16 0.0334 0.0090 −0.3424 0.050*
C17 0.14990 (15) 0.02967 (6) −0.12746 (14) 0.0382 (3)
H17 0.0663 0.0111 −0.0874 0.046*
C18 0.23490 (16) 0.26755 (6) 0.02792 (14) 0.0402 (3)
H18A 0.1387 0.2715 −0.0575 0.048*
H18B 0.3300 0.2904 0.0065 0.048*
H18C 0.2098 0.2887 0.1140 0.048*
C19 0.92919 (19) 0.35155 (7) 0.67676 (16) 0.0505 (4)
H19A 1.0101 0.3760 0.7539 0.061*
H19B 0.8173 0.3668 0.6752 0.061*
H19C 0.9506 0.3606 0.5808 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0822 (6) 0.0620 (5) 0.0351 (4) −0.0059 (4) 0.0196 (4) −0.0056 (4)
O1 0.0478 (5) 0.0476 (5) 0.0395 (5) −0.0152 (4) 0.0088 (4) 0.0038 (4)
O2 0.0411 (5) 0.0351 (5) 0.0353 (4) 0.0021 (4) −0.0042 (4) −0.0002 (3)
O3 0.0421 (5) 0.0433 (5) 0.0387 (5) −0.0027 (4) −0.0039 (4) −0.0046 (4)
C1 0.0351 (6) 0.0297 (6) 0.0313 (6) 0.0017 (5) 0.0071 (5) 0.0016 (4)
C2 0.0311 (6) 0.0352 (6) 0.0284 (5) 0.0017 (5) 0.0056 (4) 0.0004 (5)
C3 0.0319 (6) 0.0340 (6) 0.0315 (6) −0.0009 (5) 0.0085 (5) −0.0006 (5)
C4 0.0359 (6) 0.0310 (6) 0.0346 (6) 0.0009 (5) 0.0104 (5) 0.0021 (5)
C5 0.0314 (6) 0.0334 (6) 0.0310 (6) 0.0023 (4) 0.0090 (5) 0.0009 (4)
C6 0.0382 (6) 0.0353 (6) 0.0348 (6) 0.0044 (5) 0.0073 (5) 0.0043 (5)
C7 0.0368 (6) 0.0433 (7) 0.0311 (6) 0.0059 (5) 0.0015 (5) 0.0031 (5)
C8 0.0314 (6) 0.0400 (7) 0.0319 (6) 0.0005 (5) 0.0058 (5) −0.0045 (5)
C9 0.0335 (6) 0.0321 (6) 0.0325 (6) 0.0012 (5) 0.0078 (5) −0.0004 (5)
C10 0.0298 (6) 0.0333 (6) 0.0295 (6) 0.0017 (4) 0.0092 (4) −0.0001 (4)
C11 0.0316 (6) 0.0320 (6) 0.0383 (6) −0.0011 (5) 0.0081 (5) 0.0018 (5)
C12 0.0336 (6) 0.0273 (5) 0.0364 (6) −0.0008 (4) 0.0085 (5) −0.0014 (4)
C13 0.0374 (6) 0.0334 (6) 0.0427 (7) −0.0064 (5) 0.0111 (5) −0.0051 (5)
C14 0.0520 (8) 0.0349 (6) 0.0479 (7) −0.0058 (5) 0.0247 (6) −0.0038 (5)
C15 0.0562 (8) 0.0339 (6) 0.0336 (6) 0.0034 (5) 0.0136 (6) −0.0033 (5)
C16 0.0415 (7) 0.0423 (7) 0.0389 (7) −0.0020 (5) 0.0048 (5) −0.0063 (5)
C17 0.0356 (6) 0.0387 (6) 0.0403 (6) −0.0061 (5) 0.0103 (5) −0.0026 (5)
C18 0.0400 (7) 0.0370 (6) 0.0376 (7) 0.0032 (5) −0.0007 (5) 0.0047 (5)
C19 0.0513 (8) 0.0409 (7) 0.0509 (8) −0.0057 (6) −0.0018 (6) −0.0071 (6)

Geometric parameters (Å, °)

F1—C15 1.3575 (14) C8—C9 1.3715 (16)
O1—C11 1.2224 (15) C9—C10 1.4186 (16)
O2—C2 1.3615 (14) C9—H9 0.9500
O2—C18 1.4327 (15) C11—C12 1.4922 (16)
O3—C8 1.3632 (14) C12—C17 1.3906 (17)
O3—C19 1.4238 (16) C12—C13 1.3922 (17)
C1—C2 1.3709 (16) C13—C14 1.3835 (18)
C1—C10 1.4174 (16) C13—H13 0.9500
C1—H1 0.9500 C14—C15 1.3750 (19)
C2—C3 1.4279 (16) C14—H14 0.9500
C3—C4 1.3763 (16) C15—C16 1.3708 (19)
C3—C11 1.4965 (16) C16—C17 1.3808 (18)
C4—C5 1.4072 (16) C16—H16 0.9500
C4—H4 0.9500 C17—H17 0.9500
C5—C6 1.4219 (16) C18—H18A 0.9800
C5—C10 1.4232 (16) C18—H18B 0.9800
C6—C7 1.3608 (18) C18—H18C 0.9800
C6—H6 0.9500 C19—H19A 0.9800
C7—C8 1.4144 (17) C19—H19B 0.9800
C7—H7 0.9500 C19—H19C 0.9800
C2—O2—C18 117.22 (9) O1—C11—C3 120.54 (11)
C8—O3—C19 117.70 (10) C12—C11—C3 119.14 (10)
C2—C1—C10 120.89 (11) C17—C12—C13 118.98 (11)
C2—C1—H1 119.6 C17—C12—C11 119.42 (10)
C10—C1—H1 119.6 C13—C12—C11 121.57 (11)
O2—C2—C1 124.50 (11) C14—C13—C12 120.60 (12)
O2—C2—C3 115.09 (10) C14—C13—H13 119.7
C1—C2—C3 120.37 (10) C12—C13—H13 119.7
C4—C3—C2 118.84 (11) C15—C14—C13 118.15 (12)
C4—C3—C11 118.84 (11) C15—C14—H14 120.9
C2—C3—C11 122.32 (10) C13—C14—H14 120.9
C3—C4—C5 122.10 (11) F1—C15—C16 118.53 (12)
C3—C4—H4 118.9 F1—C15—C14 118.26 (12)
C5—C4—H4 118.9 C16—C15—C14 123.20 (12)
C4—C5—C6 122.91 (11) C15—C16—C17 117.88 (12)
C4—C5—C10 118.57 (10) C15—C16—H16 121.1
C6—C5—C10 118.52 (11) C17—C16—H16 121.1
C7—C6—C5 120.93 (11) C16—C17—C12 121.13 (11)
C7—C6—H6 119.5 C16—C17—H17 119.4
C5—C6—H6 119.5 C12—C17—H17 119.4
C6—C7—C8 120.28 (11) O2—C18—H18A 109.5
C6—C7—H7 119.9 O2—C18—H18B 109.5
C8—C7—H7 119.9 H18A—C18—H18B 109.5
O3—C8—C9 124.86 (11) O2—C18—H18C 109.5
O3—C8—C7 114.32 (10) H18A—C18—H18C 109.5
C9—C8—C7 120.82 (11) H18B—C18—H18C 109.5
C8—C9—C10 119.84 (11) O3—C19—H19A 109.5
C8—C9—H9 120.1 O3—C19—H19B 109.5
C10—C9—H9 120.1 H19A—C19—H19B 109.5
C1—C10—C9 121.26 (11) O3—C19—H19C 109.5
C1—C10—C5 119.10 (10) H19A—C19—H19C 109.5
C9—C10—C5 119.61 (10) H19B—C19—H19C 109.5
O1—C11—C12 120.27 (11)
C18—O2—C2—C1 −8.47 (17) C8—C9—C10—C5 −0.31 (17)
C18—O2—C2—C3 169.07 (10) C4—C5—C10—C1 1.65 (16)
C10—C1—C2—O2 176.29 (10) C6—C5—C10—C1 −178.51 (11)
C10—C1—C2—C3 −1.12 (18) C4—C5—C10—C9 −179.93 (10)
O2—C2—C3—C4 −173.95 (10) C6—C5—C10—C9 −0.08 (16)
C1—C2—C3—C4 3.70 (17) C4—C3—C11—O1 43.90 (16)
O2—C2—C3—C11 5.21 (16) C2—C3—C11—O1 −135.26 (12)
C1—C2—C3—C11 −177.14 (11) C4—C3—C11—C12 −133.52 (12)
C2—C3—C4—C5 −3.63 (17) C2—C3—C11—C12 47.32 (16)
C11—C3—C4—C5 177.18 (10) O1—C11—C12—C17 28.70 (17)
C3—C4—C5—C6 −178.86 (11) C3—C11—C12—C17 −153.88 (11)
C3—C4—C5—C10 0.98 (17) O1—C11—C12—C13 −149.31 (12)
C4—C5—C6—C7 −179.94 (11) C3—C11—C12—C13 28.11 (16)
C10—C5—C6—C7 0.22 (18) C17—C12—C13—C14 0.55 (18)
C5—C6—C7—C8 0.02 (19) C11—C12—C13—C14 178.57 (11)
C19—O3—C8—C9 5.92 (18) C12—C13—C14—C15 1.42 (19)
C19—O3—C8—C7 −174.07 (11) C13—C14—C15—F1 178.38 (11)
C6—C7—C8—O3 179.56 (11) C13—C14—C15—C16 −2.2 (2)
C6—C7—C8—C9 −0.42 (18) F1—C15—C16—C17 −179.69 (11)
O3—C8—C9—C10 −179.42 (10) C14—C15—C16—C17 0.9 (2)
C7—C8—C9—C10 0.56 (17) C15—C16—C17—C12 1.21 (19)
C2—C1—C10—C9 −179.95 (10) C13—C12—C17—C16 −1.91 (18)
C2—C1—C10—C5 −1.55 (17) C11—C12—C17—C16 −179.97 (11)
C8—C9—C10—C1 178.08 (11)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C5/C10 ring.
D—H···A D—H H···A D···A D—H···A
C18—H18B···Cg1i 0.98 2.85 3.7479 (14) 152
C17—H17···O1ii 0.95 2.55 3.2930 (16) 136
C18—H18A···O3iii 0.98 2.39 3.3603 (16) 169

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y, −z; (iii) x−1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5198).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Hijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o554. [DOI] [PMC free article] [PubMed]
  5. Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278. [DOI] [PMC free article] [PubMed]
  6. Nakaema, K., Okamoto, A., Imaizumi, M., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o612. [DOI] [PMC free article] [PubMed]
  7. Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.
  8. Okamoto, A. & Yonezawa, N. (2009). Chem. Lett 38, 914–915.
  9. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  10. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010a). Acta Cryst. E66, o403. [DOI] [PMC free article] [PubMed]
  13. Watanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o615. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810006859/bt5198sup1.cif

e-66-0o712-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006859/bt5198Isup2.hkl

e-66-0o712-Isup2.hkl (134.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES