Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 17;66(Pt 3):o638. doi: 10.1107/S1600536810005295

{(1R,3S)-2-Benzyl-6,7-dimeth­oxy-1-phenyl-1,2,3,4-tetra­hydro­isoquinolin-3-yl}diphenyl­methanol

Tricia Naicker a,*, Thavendran Govender b, Hendrik G Kruger a, Glenn EM Maguire a
PMCID: PMC2983732  PMID: 21580394

Abstract

In the title compound, C37H35NO3, a precursor to novel chiral catalysts, the N-containing six-membered ring assumes a half-chair conformation. Inter­molecular C—H⋯O hydrogen bonds link the mol­ecules in the crystal structure.

Related literature

For the synthesis of the title compound, see: Chakka et al. (2010). For related structures, see: Aubry et al. (2006). For a related structure with the same chiral centres and configuration, see: Naicker et al. (2009). For proline diaryl alcohols, see: Diner et al. (2008); Seebach et al. (2008).graphic file with name e-66-0o638-scheme1.jpg

Experimental

Crystal data

  • C37H35NO3

  • M r = 541.66

  • Monoclinic, Inline graphic

  • a = 11.9706 (5) Å

  • b = 10.1934 (4) Å

  • c = 13.1515 (5) Å

  • β = 116.546 (2)°

  • V = 1435.58 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.62 mm−1

  • T = 173 K

  • 0.22 × 0.14 × 0.12 mm

Data collection

  • Bruker Kappa Duo APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.876, T max = 0.930

  • 15262 measured reflections

  • 2514 independent reflections

  • 2451 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.068

  • S = 1.10

  • 2514 reflections

  • 375 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536810005295/lx2135sup1.cif

e-66-0o638-sup1.cif (27.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005295/lx2135Isup2.hkl

e-66-0o638-Isup2.hkl (123.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O2i 0.95 2.44 3.385 (2) 171

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors wish to thank Dr Hong Su of the Chemistry Department of the University of Cape Town for her assistance with the crystallographic data collection and Dr M Bala of the School of Chemistry at University of KwaZulu-Natal for his assistance with preparation of this manuscript.

supplementary crystallographic information

Comment

The title compound (2, Fig. 3) is a precursor in the synthesis of novel chiral ligands involving a tetrahydroisoquinoline backbone. Recently, we have reported the application of these ligands as useful catalysts for transfer hydrogenation reactions (Chakka et al., 2010).

Compound 2 contains four phenyl rings and the absolute stereochemistry was confirmed to be R,S at C1 and C9 positions as shown in Fig. 1, respectively (Aubry et al., 2006). The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds. The H atom of methanol does not form hydrogen bonds (Table 1 & Fig. 2). According to the Cambridge structural data base this is the first tetrahydroisoquinoline derivative with diaryl substitution at the C10 position. The structure displays a gauche or sc (synclinal) conformation around the O3—C10—C9—N1 bond with the OH group almost over the piperidine ring with a torsion angle of -77.0 (2)°. Due to the lack of analogous structures this observation was compared to proline diaryl alcohols (Seebach et al., 2008) which display a similar conformation around the exocyclic C9—C10 bond. Given the success of proline diaryl alcohols as a chiral catalyst (Diner et al., 2008) this comparison is particularly useful for catalysts bearing a tetrahydroisoquinoline framework as this feature could have a significant effect on the stereocontrol of the catalyst.

We recently reported a crystal structure of a similar molecule to the title compound (Naicker et al., 2009) which has an ester moiety at the C10 position and the N-containing six membered ring assumes a half boat conformation. The N-containing six membered ring in the title compound exists in a half chair conformation (see Fig. 1). A possible reason for this difference in conformation could be the introduction of large phenyl ring substitiuents at the C10 position. The efficiency of these tetrahydroisoquinoline catalysts is currently being tested in our laboratory.

Experimental

To a solution of compound 1 (Fig. 3) (500 mg, 1.19 mmol) in THF (10 ml), freshly prepared Grignard reagent of phenyl magnesium bromide (2.17 g, 11.9 mmol) was added under a nitrogen atmosphere at ambient temperature. Completion of the reaction was monitored with TLC by quenching 0.1 ml aliquots of the reaction mixture with saturated ammonium chloride solution at 0 °C using ethyl acetate/hexane as the solvent (40 : 60 Rf 0.5). Thereafter the reaction mixture was filtered and the solvent was evaporated under reduced pressure to afford the crude product. This was purified by column chromatography using ethyl acetate/hexane (40:60) as the eluent to yield 80 % (0.52 g) pure tetrahydroisoquinoline diphenyl alcohol 2 as a white solid. 1H NMR (600 MHz,CDCl3,δ, p.p.m): 7.38 (d, J = 7.26 Hz, 2H), 7.32–7.16 (m, 9H), 6.54 (s, 1H), 6.26 (s, 1H), 5.19 (s, 1H), 3.85–3.72 (m, 6H), 3.61 (s,6H), 3.23 (dd, J = 5.10, 15.66 Hz, 1H), 2.98 (dd, J = 3.00, 15.72, Hz, 1H). Light yellow crystals suitable for X-ray diffraction were obtained by slow evaporation of 2 in dichloromethane at room temperature.

Refinement

The H atom of O3 was located in difference Fourier map and freely refined. All H atoms and C atoms were positioned geometrically and refined using a riding model, with C—H = 1.00 (CH), 0.99 (CH2), 0.98 (CH3) and 0.93 (aromatic CH) Å. Uiso(H) = 1.5Ueq (C) for methyl H atoms and 1.2Ueq(C) for other all H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

The C—H···O interactions (dotted lines) in the crystal structure of the title compound along the a axis. [Symmetry codes: i) x, y, z -1 ; ii) x, y, z + 1.]

Fig. 3.

Fig. 3.

Reaction scheme.

Crystal data

C37H35NO3 F(000) = 576
Mr = 541.66 Dx = 1.253 Mg m3
Monoclinic, P21 Melting point: 478 K
Hall symbol: P 2yb Cu Kα radiation, λ = 1.54184 Å
a = 11.9706 (5) Å Cell parameters from 15260 reflections
b = 10.1934 (4) Å θ = 4.1–64.1°
c = 13.1515 (5) Å µ = 0.62 mm1
β = 116.546 (2)° T = 173 K
V = 1435.58 (10) Å3 Needle, light-yellow
Z = 2 0.22 × 0.14 × 0.12 mm

Data collection

Bruker Kappa Duo APEXII diffractometer 2514 independent reflections
Radiation source: fine-focus sealed tube 2451 reflections with I > 2σ(I)
graphite Rint = 0.025
0.5° φ scans and ω scans θmax = 64.1°, θmin = 4.1°
Absorption correction: multi-scan (SADABS; Bruker, 2006) h = −13→13
Tmin = 0.876, Tmax = 0.930 k = −11→11
15262 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.1556P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
2514 reflections Δρmax = 0.14 e Å3
375 parameters Δρmin = −0.12 e Å3
1 restraint Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0019 (4)

Special details

Experimental. Half sphere of data collected using SAINT strategy (Bruker, 2006). Crystal to detector distance = 50 mm; combination of φ and ω scans of 0.5°, 70 s per °, 2 iterations.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.22854 (13) 0.26734 (16) 1.12303 (10) 0.0431 (3)
O2 0.04675 (14) 0.12697 (17) 0.98256 (12) 0.0500 (4)
O3 0.05661 (12) 0.42417 (16) 0.44410 (11) 0.0404 (3)
H3O −0.004 (3) 0.362 (3) 0.413 (2) 0.075 (9)*
N1 0.25806 (13) 0.46610 (15) 0.69414 (12) 0.0293 (3)
C1 0.32465 (16) 0.43732 (19) 0.81717 (14) 0.0301 (4)
H1 0.3345 0.5232 0.8571 0.036*
C2 0.24903 (16) 0.34980 (18) 0.85715 (15) 0.0308 (4)
C3 0.27894 (17) 0.34611 (19) 0.97314 (15) 0.0329 (4)
H3 0.3486 0.3948 1.0255 0.040*
C4 0.20987 (17) 0.2737 (2) 1.01278 (15) 0.0346 (4)
C5 0.10937 (17) 0.1980 (2) 0.93545 (16) 0.0366 (4)
C6 0.08020 (17) 0.2006 (2) 0.82194 (15) 0.0348 (4)
H6 0.0123 0.1494 0.7702 0.042*
C7 0.14841 (16) 0.27720 (19) 0.78076 (15) 0.0315 (4)
C8 0.10892 (16) 0.2823 (2) 0.65460 (15) 0.0327 (4)
H8A 0.0316 0.3350 0.6169 0.039*
H8B 0.0906 0.1924 0.6229 0.039*
C9 0.21113 (16) 0.34278 (18) 0.63028 (14) 0.0294 (4)
H9 0.2827 0.2798 0.6612 0.035*
C10 0.17522 (16) 0.35837 (19) 0.50136 (15) 0.0310 (4)
C11 0.16612 (15) 0.22675 (19) 0.44078 (15) 0.0307 (4)
C12 0.19679 (17) 0.1051 (2) 0.49339 (15) 0.0339 (4)
H12 0.2266 0.0994 0.5734 0.041*
C13 0.18466 (18) −0.0085 (2) 0.43084 (18) 0.0384 (4)
H13 0.2054 −0.0910 0.4683 0.046*
C14 0.14278 (19) −0.0023 (2) 0.31498 (18) 0.0409 (5)
H14 0.1338 −0.0802 0.2724 0.049*
C15 0.11407 (19) 0.1175 (2) 0.26129 (16) 0.0434 (5)
H15 0.0862 0.1227 0.1815 0.052*
C16 0.12580 (18) 0.2302 (2) 0.32337 (16) 0.0394 (5)
H16 0.1059 0.3123 0.2853 0.047*
C17 0.27291 (17) 0.44212 (19) 0.48694 (14) 0.0334 (4)
C18 0.2411 (2) 0.5509 (2) 0.41693 (18) 0.0489 (5)
H18 0.1563 0.5780 0.3789 0.059*
C19 0.3321 (3) 0.6211 (3) 0.4016 (2) 0.0626 (7)
H19 0.3091 0.6952 0.3527 0.075*
C20 0.4552 (3) 0.5837 (3) 0.4569 (2) 0.0636 (7)
H20 0.5172 0.6317 0.4463 0.076*
C21 0.4880 (2) 0.4767 (3) 0.5273 (2) 0.0553 (6)
H21 0.5729 0.4504 0.5656 0.066*
C22 0.39822 (18) 0.4074 (2) 0.54256 (18) 0.0409 (5)
H22 0.4224 0.3340 0.5923 0.049*
C23 0.45677 (16) 0.38930 (19) 0.84700 (14) 0.0314 (4)
C24 0.50143 (18) 0.2662 (2) 0.89154 (16) 0.0392 (4)
H24 0.4496 0.2076 0.9075 0.047*
C25 0.6210 (2) 0.2279 (2) 0.9130 (2) 0.0513 (5)
H25 0.6500 0.1428 0.9424 0.062*
C26 0.6982 (2) 0.3123 (3) 0.8920 (2) 0.0532 (6)
H26 0.7797 0.2852 0.9058 0.064*
C27 0.65631 (19) 0.4367 (3) 0.85060 (19) 0.0526 (6)
H27 0.7097 0.4966 0.8381 0.063*
C28 0.53601 (18) 0.4734 (2) 0.82747 (18) 0.0447 (5)
H28 0.5071 0.5583 0.7975 0.054*
C29 0.3369 (2) 0.3293 (3) 1.20594 (16) 0.0490 (5)
H29A 0.3399 0.3181 1.2811 0.074*
H29B 0.3344 0.4230 1.1885 0.074*
H29C 0.4112 0.2896 1.2055 0.074*
C30 −0.0409 (2) 0.0329 (3) 0.9135 (2) 0.0639 (7)
H30A −0.0784 −0.0106 0.9573 0.096*
H30B 0.0012 −0.0324 0.8880 0.096*
H30C −0.1064 0.0765 0.8473 0.096*
C31 0.16184 (17) 0.5677 (2) 0.67155 (17) 0.0359 (4)
H31A 0.1115 0.5449 0.7117 0.043*
H31B 0.1052 0.5709 0.5891 0.043*
C32 0.22097 (17) 0.7003 (2) 0.71081 (16) 0.0391 (5)
C33 0.1997 (2) 0.7730 (3) 0.7892 (2) 0.0552 (6)
H33 0.1479 0.7391 0.8206 0.066*
C34 0.2552 (3) 0.8977 (3) 0.8222 (2) 0.0750 (9)
H34 0.2416 0.9479 0.8765 0.090*
C35 0.3287 (3) 0.9462 (3) 0.7760 (2) 0.0765 (9)
H35 0.3647 1.0310 0.7973 0.092*
C36 0.3507 (2) 0.8743 (3) 0.6998 (2) 0.0637 (7)
H36 0.4025 0.9088 0.6686 0.076*
C37 0.2985 (2) 0.7520 (2) 0.66755 (19) 0.0495 (5)
H37 0.3156 0.7021 0.6151 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0513 (8) 0.0493 (8) 0.0319 (6) −0.0119 (7) 0.0214 (6) −0.0048 (6)
O2 0.0593 (9) 0.0570 (10) 0.0414 (7) −0.0261 (8) 0.0294 (7) −0.0056 (7)
O3 0.0328 (7) 0.0446 (8) 0.0367 (7) 0.0091 (7) 0.0094 (5) 0.0015 (7)
N1 0.0304 (7) 0.0272 (8) 0.0309 (7) −0.0005 (6) 0.0143 (6) 0.0002 (6)
C1 0.0332 (9) 0.0264 (9) 0.0315 (8) −0.0034 (8) 0.0154 (7) −0.0028 (8)
C2 0.0342 (9) 0.0278 (9) 0.0335 (9) −0.0016 (8) 0.0179 (7) −0.0032 (8)
C3 0.0372 (9) 0.0308 (10) 0.0325 (8) −0.0048 (8) 0.0171 (7) −0.0061 (8)
C4 0.0431 (10) 0.0336 (10) 0.0317 (8) −0.0012 (9) 0.0209 (8) −0.0022 (8)
C5 0.0419 (10) 0.0360 (11) 0.0384 (9) −0.0066 (9) 0.0239 (8) −0.0022 (9)
C6 0.0363 (9) 0.0347 (10) 0.0359 (9) −0.0082 (8) 0.0185 (8) −0.0058 (8)
C7 0.0341 (9) 0.0292 (9) 0.0348 (9) −0.0022 (8) 0.0184 (7) −0.0037 (8)
C8 0.0340 (9) 0.0334 (10) 0.0324 (9) −0.0038 (8) 0.0164 (7) −0.0041 (8)
C9 0.0306 (8) 0.0272 (9) 0.0320 (9) 0.0002 (7) 0.0153 (7) −0.0010 (7)
C10 0.0299 (9) 0.0320 (10) 0.0321 (9) 0.0035 (8) 0.0146 (7) 0.0032 (8)
C11 0.0274 (8) 0.0360 (10) 0.0326 (9) −0.0043 (8) 0.0169 (7) −0.0012 (8)
C12 0.0354 (9) 0.0362 (10) 0.0313 (9) 0.0015 (8) 0.0160 (7) −0.0006 (8)
C13 0.0367 (10) 0.0337 (11) 0.0480 (11) 0.0005 (8) 0.0218 (9) −0.0014 (9)
C14 0.0415 (10) 0.0444 (12) 0.0462 (11) −0.0106 (9) 0.0281 (9) −0.0145 (9)
C15 0.0504 (11) 0.0527 (13) 0.0334 (9) −0.0138 (11) 0.0245 (9) −0.0082 (10)
C16 0.0465 (10) 0.0420 (12) 0.0331 (9) −0.0069 (9) 0.0208 (8) 0.0017 (9)
C17 0.0421 (10) 0.0290 (10) 0.0332 (8) −0.0022 (8) 0.0206 (8) −0.0022 (8)
C18 0.0616 (13) 0.0418 (12) 0.0446 (11) 0.0023 (11) 0.0248 (10) 0.0105 (10)
C19 0.100 (2) 0.0388 (13) 0.0616 (14) −0.0096 (14) 0.0470 (14) 0.0111 (12)
C20 0.0764 (18) 0.0510 (16) 0.0845 (18) −0.0174 (13) 0.0548 (15) 0.0012 (14)
C21 0.0490 (12) 0.0551 (15) 0.0755 (16) −0.0087 (12) 0.0401 (12) −0.0028 (13)
C22 0.0422 (10) 0.0355 (11) 0.0525 (11) 0.0002 (9) 0.0278 (9) 0.0036 (9)
C23 0.0319 (9) 0.0327 (10) 0.0274 (8) −0.0035 (8) 0.0113 (7) −0.0033 (7)
C24 0.0394 (10) 0.0300 (10) 0.0444 (10) −0.0043 (9) 0.0154 (8) −0.0038 (9)
C25 0.0447 (11) 0.0395 (12) 0.0604 (13) 0.0066 (10) 0.0151 (10) −0.0008 (10)
C26 0.0353 (10) 0.0587 (16) 0.0612 (14) 0.0057 (11) 0.0174 (10) −0.0032 (12)
C27 0.0374 (11) 0.0624 (16) 0.0598 (13) −0.0038 (11) 0.0233 (10) 0.0089 (13)
C28 0.0377 (10) 0.0435 (12) 0.0524 (11) −0.0004 (9) 0.0197 (9) 0.0118 (10)
C29 0.0525 (12) 0.0600 (14) 0.0337 (10) −0.0104 (11) 0.0185 (9) −0.0055 (10)
C30 0.0733 (16) 0.0710 (18) 0.0550 (13) −0.0382 (15) 0.0354 (12) −0.0082 (13)
C31 0.0318 (9) 0.0307 (10) 0.0434 (10) 0.0024 (8) 0.0152 (8) −0.0016 (8)
C32 0.0346 (9) 0.0282 (10) 0.0416 (10) 0.0059 (8) 0.0057 (8) 0.0012 (9)
C33 0.0553 (13) 0.0428 (13) 0.0526 (12) 0.0115 (11) 0.0108 (10) −0.0074 (11)
C34 0.093 (2) 0.0450 (16) 0.0549 (14) 0.0174 (15) 0.0041 (14) −0.0155 (12)
C35 0.0830 (19) 0.0335 (14) 0.0658 (16) −0.0077 (13) −0.0091 (14) 0.0039 (13)
C36 0.0584 (14) 0.0397 (13) 0.0640 (15) −0.0079 (11) 0.0014 (11) 0.0134 (12)
C37 0.0462 (11) 0.0364 (12) 0.0537 (12) 0.0007 (10) 0.0113 (9) 0.0092 (10)

Geometric parameters (Å, °)

O1—C4 1.366 (2) C18—C19 1.392 (3)
O1—C29 1.416 (3) C18—H18 0.9500
O2—C5 1.373 (2) C19—C20 1.374 (4)
O2—C30 1.412 (3) C19—H19 0.9500
O3—C10 1.441 (2) C20—C21 1.370 (4)
O3—H3O 0.91 (3) C20—H20 0.9500
N1—C9 1.476 (2) C21—C22 1.373 (3)
N1—C31 1.477 (2) C21—H21 0.9500
N1—C1 1.479 (2) C22—H22 0.9500
C1—C2 1.522 (2) C23—C28 1.385 (3)
C1—C23 1.530 (2) C23—C24 1.387 (3)
C1—H1 1.0000 C24—C25 1.386 (3)
C2—C7 1.388 (3) C24—H24 0.9500
C2—C3 1.403 (2) C25—C26 1.378 (3)
C3—C4 1.373 (3) C25—H25 0.9500
C3—H3 0.9500 C26—C27 1.382 (4)
C4—C5 1.408 (3) C26—H26 0.9500
C5—C6 1.373 (3) C27—C28 1.384 (3)
C6—C7 1.402 (3) C27—H27 0.9500
C6—H6 0.9500 C28—H28 0.9500
C7—C8 1.509 (2) C29—H29A 0.9800
C8—C9 1.526 (2) C29—H29B 0.9800
C8—H8A 0.9900 C29—H29C 0.9800
C8—H8B 0.9900 C30—H30A 0.9800
C9—C10 1.560 (2) C30—H30B 0.9800
C9—H9 1.0000 C30—H30C 0.9800
C10—C17 1.527 (3) C31—C32 1.506 (3)
C10—C11 1.539 (3) C31—H31A 0.9900
C11—C12 1.387 (3) C31—H31B 0.9900
C11—C16 1.397 (3) C32—C33 1.382 (3)
C12—C13 1.390 (3) C32—C37 1.391 (3)
C12—H12 0.9500 C33—C34 1.410 (4)
C13—C14 1.376 (3) C33—H33 0.9500
C13—H13 0.9500 C34—C35 1.365 (5)
C14—C15 1.375 (3) C34—H34 0.9500
C14—H14 0.9500 C35—C36 1.360 (4)
C15—C16 1.379 (3) C35—H35 0.9500
C15—H15 0.9500 C36—C37 1.373 (3)
C16—H16 0.9500 C36—H36 0.9500
C17—C18 1.382 (3) C37—H37 0.9500
C17—C22 1.389 (3)
C4—O1—C29 117.08 (15) C17—C18—C19 120.6 (2)
C5—O2—C30 117.80 (15) C17—C18—H18 119.7
C10—O3—H3O 108 (2) C19—C18—H18 119.7
C9—N1—C31 114.74 (13) C20—C19—C18 120.3 (2)
C9—N1—C1 109.60 (14) C20—C19—H19 119.8
C31—N1—C1 110.47 (14) C18—C19—H19 119.8
N1—C1—C2 112.41 (14) C21—C20—C19 119.6 (2)
N1—C1—C23 109.51 (13) C21—C20—H20 120.2
C2—C1—C23 115.48 (15) C19—C20—H20 120.2
N1—C1—H1 106.3 C20—C21—C22 120.2 (2)
C2—C1—H1 106.3 C20—C21—H21 119.9
C23—C1—H1 106.3 C22—C21—H21 119.9
C7—C2—C3 119.34 (16) C21—C22—C17 121.5 (2)
C7—C2—C1 121.35 (15) C21—C22—H22 119.2
C3—C2—C1 119.28 (16) C17—C22—H22 119.2
C4—C3—C2 121.52 (17) C28—C23—C24 118.13 (18)
C4—C3—H3 119.2 C28—C23—C1 118.02 (17)
C2—C3—H3 119.2 C24—C23—C1 123.85 (17)
O1—C4—C3 125.99 (17) C25—C24—C23 120.6 (2)
O1—C4—C5 114.97 (16) C25—C24—H24 119.7
C3—C4—C5 119.04 (16) C23—C24—H24 119.7
C6—C5—O2 125.18 (17) C26—C25—C24 120.5 (2)
C6—C5—C4 119.63 (16) C26—C25—H25 119.7
O2—C5—C4 115.18 (16) C24—C25—H25 119.7
C5—C6—C7 121.47 (17) C25—C26—C27 119.6 (2)
C5—C6—H6 119.3 C25—C26—H26 120.2
C7—C6—H6 119.3 C27—C26—H26 120.2
C2—C7—C6 118.96 (16) C26—C27—C28 119.6 (2)
C2—C7—C8 121.43 (16) C26—C27—H27 120.2
C6—C7—C8 119.58 (15) C28—C27—H27 120.2
C7—C8—C9 110.96 (14) C27—C28—C23 121.6 (2)
C7—C8—H8A 109.4 C27—C28—H28 119.2
C9—C8—H8A 109.4 C23—C28—H28 119.2
C7—C8—H8B 109.4 O1—C29—H29A 109.5
C9—C8—H8B 109.4 O1—C29—H29B 109.5
H8A—C8—H8B 108.0 H29A—C29—H29B 109.5
N1—C9—C8 111.20 (14) O1—C29—H29C 109.5
N1—C9—C10 112.43 (15) H29A—C29—H29C 109.5
C8—C9—C10 114.31 (14) H29B—C29—H29C 109.5
N1—C9—H9 106.1 O2—C30—H30A 109.5
C8—C9—H9 106.1 O2—C30—H30B 109.5
C10—C9—H9 106.1 H30A—C30—H30B 109.5
O3—C10—C17 107.77 (15) O2—C30—H30C 109.5
O3—C10—C11 108.05 (14) H30A—C30—H30C 109.5
C17—C10—C11 107.71 (14) H30B—C30—H30C 109.5
O3—C10—C9 110.11 (14) N1—C31—C32 110.84 (14)
C17—C10—C9 109.74 (14) N1—C31—H31A 109.5
C11—C10—C9 113.28 (15) C32—C31—H31A 109.5
C12—C11—C16 117.22 (18) N1—C31—H31B 109.5
C12—C11—C10 125.39 (15) C32—C31—H31B 109.5
C16—C11—C10 117.37 (17) H31A—C31—H31B 108.1
C11—C12—C13 121.01 (16) C33—C32—C37 118.8 (2)
C11—C12—H12 119.5 C33—C32—C31 121.4 (2)
C13—C12—H12 119.5 C37—C32—C31 119.80 (19)
C14—C13—C12 120.46 (19) C32—C33—C34 119.6 (3)
C14—C13—H13 119.8 C32—C33—H33 120.2
C12—C13—H13 119.8 C34—C33—H33 120.2
C13—C14—C15 119.53 (19) C35—C34—C33 119.9 (3)
C13—C14—H14 120.2 C35—C34—H34 120.1
C15—C14—H14 120.2 C33—C34—H34 120.1
C14—C15—C16 119.97 (17) C36—C35—C34 120.6 (3)
C14—C15—H15 120.0 C36—C35—H35 119.7
C16—C15—H15 120.0 C34—C35—H35 119.7
C15—C16—C11 121.8 (2) C35—C36—C37 120.4 (3)
C15—C16—H16 119.1 C35—C36—H36 119.8
C11—C16—H16 119.1 C37—C36—H36 119.8
C18—C17—C22 117.82 (18) C36—C37—C32 120.8 (3)
C18—C17—C10 122.22 (17) C36—C37—H37 119.6
C22—C17—C10 119.94 (17) C32—C37—H37 119.6
C9—N1—C1—C2 −49.61 (18) C16—C11—C12—C13 −1.6 (3)
C31—N1—C1—C2 77.77 (18) C10—C11—C12—C13 179.67 (18)
C9—N1—C1—C23 80.17 (17) C11—C12—C13—C14 0.6 (3)
C31—N1—C1—C23 −152.45 (15) C12—C13—C14—C15 0.7 (3)
N1—C1—C2—C7 17.4 (2) C13—C14—C15—C16 −0.8 (3)
C23—C1—C2—C7 −109.28 (19) C14—C15—C16—C11 −0.2 (3)
N1—C1—C2—C3 −160.34 (16) C12—C11—C16—C15 1.4 (3)
C23—C1—C2—C3 73.0 (2) C10—C11—C16—C15 −179.74 (17)
C7—C2—C3—C4 −0.9 (3) O3—C10—C17—C18 −7.7 (2)
C1—C2—C3—C4 176.84 (17) C11—C10—C17—C18 108.7 (2)
C29—O1—C4—C3 −7.4 (3) C9—C10—C17—C18 −127.62 (19)
C29—O1—C4—C5 172.86 (19) O3—C10—C17—C22 174.30 (16)
C2—C3—C4—O1 −177.54 (18) C11—C10—C17—C22 −69.3 (2)
C2—C3—C4—C5 2.2 (3) C9—C10—C17—C22 54.4 (2)
C30—O2—C5—C6 11.0 (3) C22—C17—C18—C19 1.2 (3)
C30—O2—C5—C4 −169.7 (2) C10—C17—C18—C19 −176.8 (2)
O1—C4—C5—C6 178.01 (18) C17—C18—C19—C20 −0.6 (4)
C3—C4—C5—C6 −1.8 (3) C18—C19—C20—C21 0.0 (4)
O1—C4—C5—O2 −1.3 (3) C19—C20—C21—C22 −0.1 (4)
C3—C4—C5—O2 178.95 (18) C20—C21—C22—C17 0.7 (3)
O2—C5—C6—C7 179.27 (19) C18—C17—C22—C21 −1.3 (3)
C4—C5—C6—C7 0.0 (3) C10—C17—C22—C21 176.81 (19)
C3—C2—C7—C6 −0.8 (3) N1—C1—C23—C28 61.0 (2)
C1—C2—C7—C6 −178.51 (17) C2—C1—C23—C28 −170.93 (16)
C3—C2—C7—C8 177.34 (17) N1—C1—C23—C24 −118.47 (18)
C1—C2—C7—C8 −0.4 (3) C2—C1—C23—C24 9.6 (2)
C5—C6—C7—C2 1.2 (3) C28—C23—C24—C25 −1.6 (3)
C5—C6—C7—C8 −176.95 (18) C1—C23—C24—C25 177.84 (18)
C2—C7—C8—C9 15.5 (2) C23—C24—C25—C26 1.0 (3)
C6—C7—C8—C9 −166.40 (17) C24—C25—C26—C27 0.9 (4)
C31—N1—C9—C8 −57.74 (19) C25—C26—C27—C28 −2.0 (4)
C1—N1—C9—C8 67.21 (17) C26—C27—C28—C23 1.4 (4)
C31—N1—C9—C10 71.89 (18) C24—C23—C28—C27 0.4 (3)
C1—N1—C9—C10 −163.16 (14) C1—C23—C28—C27 −179.1 (2)
C7—C8—C9—N1 −48.4 (2) C9—N1—C31—C32 −162.95 (15)
C7—C8—C9—C10 −177.03 (16) C1—N1—C31—C32 72.56 (19)
N1—C9—C10—O3 −77.04 (18) N1—C31—C32—C33 −122.4 (2)
C8—C9—C10—O3 51.0 (2) N1—C31—C32—C37 57.8 (2)
N1—C9—C10—C17 41.44 (19) C37—C32—C33—C34 0.8 (3)
C8—C9—C10—C17 169.44 (15) C31—C32—C33—C34 −178.93 (19)
N1—C9—C10—C11 161.84 (14) C32—C33—C34—C35 0.5 (4)
C8—C9—C10—C11 −70.15 (19) C33—C34—C35—C36 −1.2 (4)
O3—C10—C11—C12 −127.94 (18) C34—C35—C36—C37 0.5 (4)
C17—C10—C11—C12 115.89 (18) C35—C36—C37—C32 0.9 (3)
C9—C10—C11—C12 −5.7 (2) C33—C32—C37—C36 −1.6 (3)
O3—C10—C11—C16 53.3 (2) C31—C32—C37—C36 178.20 (18)
C17—C10—C11—C16 −62.88 (19) O3—C10—C9—N1 −77.04 (18)
C9—C10—C11—C16 175.57 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C15—H15···O2i 0.95 2.44 3.385 (2) 171

Symmetry codes: (i) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2135).

References

  1. Aubry, S., Pellet-Rostaing, S., Faure, R. & Lemaire, M. (2006). J. Heterocycl. Chem, 43, 139–148.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2006). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chakka, S. K., Andersson, P. G., Maguire, G. E. M., Kruger, H. G. & Govender, T. (2010). Eur. J. Org. Chem. pp. 972–980
  6. Diner, P., Kjaersgaard, A., Lie, M. A. & Jorgensen, K. A. (2008). Chem. Eur. J.14, 122–127. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Naicker, T., McKay, M., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2009). Acta Cryst. E65, o3278. [DOI] [PMC free article] [PubMed]
  9. Seebach, D., Grosělj, U., Badine, D. M., Schweizer, W. B. & Beck, A. K. (2008). Helv. Chim. Acta, 91, 1999–2034
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536810005295/lx2135sup1.cif

e-66-0o638-sup1.cif (27.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005295/lx2135Isup2.hkl

e-66-0o638-Isup2.hkl (123.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES