Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 20;66(Pt 3):m319–m320. doi: 10.1107/S1600536810005945

Bis{tris­[3-(2-pyrid­yl)-1H-pyrazole]nickel(II)} dodeca­molybdo(V,VI)phosphate hexa­hydrate

Lujiang Hao a,*, Tongjun Liu a, Jiangkui Chen a, Xiaofei Zhang a
PMCID: PMC2983742  PMID: 21580258

Abstract

The hydro­thermally prepared title compound, [Ni(C8H7N3)3]2[PMo12O40]·6H2O, is a member of the isotypic series [(M(C8H7N3)3]2[PMo12O40]·6H2O where M is Mn, Cd, and Fe. The Ni2+ cation is in a distorted octa­hedral environment, coordinated by six N atoms from three chelating 3-(2-pyrid­yl)-1H-pyrazole ligands. In the one-electron reduced heteropolyanion, two O atoms of the central PO4 group (Inline graphic symmetry) are equally disordered about an inversion centre. N—H⋯O and O—H⋯O hydrogen bonds contribute to the crystal packing. Compared with the isotypic structures, the main difference is related with the M—N bond lengths, whereas all other bond lengths, angles and the hydrogen-bonding motifs are very similar.

Related literature

For the isotypic analogues, see: Hao, Ma et al. (2010) for M = Mn; Hao, Wang et al. (2010) for M = Cd; Hao, Liu, et al. (2010) for M = Fe. For general background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei et al. (2009). For the structures of other reduced heteropolyanions with composition [PMo12O40]4−, see: Artero & Proust (2000); Kurmoo et al. (1998).; Niu et al. (1999). For the role of amines in hydro­thermal synthesis, see: Yang et al. (2003). graphic file with name e-66-0m319-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8H7N3)3]2[PMo12O40]·6H2O

  • M r = 2918.76

  • Monoclinic, Inline graphic

  • a = 18.741 (4) Å

  • b = 16.285 (3) Å

  • c = 27.678 (6) Å

  • β = 103.83 (3)°

  • V = 8202 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 293 K

  • 0.42 × 0.27 × 0.20 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.440, T max = 0.652

  • 22802 measured reflections

  • 7216 independent reflections

  • 5310 reflections with I > 2σ(I)

  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.155

  • S = 1.00

  • 7216 reflections

  • 592 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 1.58 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810005945/wm2306sup1.cif

e-66-0m319-sup1.cif (34.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005945/wm2306Isup2.hkl

e-66-0m319-Isup2.hkl (353.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni1—N5 2.077 (19)
Ni1—N8 2.06 (2)
Ni1—N2 2.084 (19)
Ni1—N4 2.13 (2)
Ni1—N1 2.118 (17)
Ni1—N7 2.14 (2)
P1—O21Ai 1.49 (2)
P1—O21Bi 1.50 (3)
P1—O19Bi 1.55 (3)
P1—O19Ai 1.57 (3)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O17ii 0.86 2.05 2.83 (3) 149
N6—H6⋯O2W 0.86 1.99 2.84 (5) 166
N9—H9A⋯O1W 0.86 1.92 2.74 (3) 160

Symmetry code: (ii) Inline graphic.

Acknowledgments

Financial support from the Inter­national Cooperation Program for Excellent Lecturers of 2008 from Shandong Provincial Education Department, the Research Award Fund for Outstanding Young and Middle-aged Scientists of Shandong Province (2008BS04022), Shandong Provincial Education Department and Shandong Institute of Education are gratefully acknowledged.

supplementary crystallographic information

Comment

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). In our research group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxomolybdates under hydrothermal condictions (Zhang, Dou et al., 2009; Zhang, Wei et al., 2009). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the asymmetric unit of the title compound consists of three subunits, viz. of a complex [Ni(C8H7N3)3]2+ cation, half of a heteropolyanion [PMo12O40]4- and of three uncoordinated water molecules. The nickel(II) ion is in a distorted octahedral coordination by six N atoms from three chelating 3-(2-pyridyl)-1H-pyrazole ligands.

The heteropolyanion [PMo12O40]4- anion is a one-electron reduced derivative of [PMo12O40]3-, similar to anions with different counter cations as reported by Artero & Proust (2000); Kurmoo et al. (1998); Niu et al. (1999). The employed organic ligand appears to adjust the pH value, and additionally supplies reducing electrons, which is a commonly observed feature of hydrothermal syntheses when organic amines are used to prepare various hybrid materials, zeolites or metal phosphates (Yang et al., 2003).

In the Keggin-type heteropolyanion, each Mo atom is surrounded by six O atoms and the P atom is located at the center of the anion. There are four kinds of O atoms present in the anion according to their coordination environments: Oa (O atoms in the disordered PO4 tetrahedron), Ob (bridging O atoms between two triplet groups of MoO6 octahedra), Oc (bridging O atoms within one triplet group of MoO6 octahedra) and Od (terminal O atoms). The P—O bond distances are in the normal range of 1.49 (2)—1.57 (3) Å. The Mo—O bond distances vary widely from 1.653 (15) to 2.55 (2) Å. The shortest Mo—O bonds are in the range of 1.653 (15)—1.665 (16) Å for the terminal oxygen atoms. The longest Mo—O lengths are in the range of 2.44 (2)—2.55 (2) Å for those oxygen atoms connected with both Mo and P atoms.

N—H···O and O—H···O hydrogen bonding between the cationic and anionic moieties and the uncoordinated water molecules leads to a consolidation of the structure (Fig. 2; Table 2).

The crystal structure of [(Ni(C8H7N3)3]2[PMo12O40](H2O)6 is isotypic with the Mn2+, Cd2+, and Fe2+ analogues, [(Mn(C8H7N3)3]2[PMo12O40](H2O)6 (Hao, Ma et al. (2010).), [(Cd(C8H7N3)3]2[PMo12O40](H2O)6 (Hao, Wang et al. (2010).), [(Fe(C8H7N3)3]2[PMo12O40](H2O)6 (Hao, Liu et al., 2010). In comparison with the Mn2+, Cd2+, and Fe2+ analogues, the Ni—N bond lengths are somewhat shorter at 2.077 (19)—2.14 (2) Å, versus 2.224 (6)—2.283 (5) Å for Mn—N, 2.085 (19)—2.15 (2) Å for Fe—N, and 2.316 (7)—2.334 (6) Å for Cd—N, whereas all other bond lengths and angles and the hydrogen-bonding motifs are very similar in the four structures.

Experimental

A mixture of 3-(2-pyridyl)-1H-pyrazole (0.5 mmoL 0.07 g), sodium molybdate (0.4 mmoL, 0.10 g), nickel(II) chloride hexahydrate (0.25 mmol, 0.05 g), and dipotassium hydrogenphosphate (0.22 mmol, 0.05 g) in 10 ml distilled water was sealed in a 25 ml Teflon-lined stainless steel autoclave and was kept at 433 K for three days. Green crystals suitable for the X-ray experiment were obtained. IR(cm-1): 3376, 3136, 2961, 1614, 1568, 1522, 1457, 1439, 1364, 1300, 1097, 950, 913, 812, 636, 507.

TGA curve shows a separation of lattice water molecules and the organic ligands above 343 and 682 K, respectively. The overall thermal decomposition process can be described by the followed equation: 4C48H54Ni2Mo12N18O46P + 325O2 = 108H2O + 192CO2 + 36N2O5 + 8NiO + 2P2O5 + 48MoO3

Refinement

All hydrogen atoms bound to aromatic carbon atoms were refined in calculated positions using a riding model with a C—H distance of 0.93 Å and Uiso = 1.2Ueq(C). Hydrogen atoms attached to aromatic N atoms were refined with a N—H distance of 0.86 Å and Uiso = 1.2Ueq(N). The hydrogen atoms of the three uncoordinated water molecules could not be located unambiguously from difference Fourier maps, probably due to disorder of the water molecules. Thus the structure was refined without the H atoms of the water molecules (which includes the water O atoms O1W, O2W, O3W). In the PO4 unit, the two oxygen atoms (O19 and O21) are equally disordered about the inversion centre. In the final difference Fourier map the highest peak is 2.70 Å from atom O2w and the deepest hole is 1.25 Å from atom O12. The highest peak is located in the voids of the crystal structure and may be associated with an additional water molecule. However, refinement of this position did not result in a reasonable model. Hence this position was also excluded from the final refinement.

Figures

Fig. 1.

Fig. 1.

The building blocks of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, displayed with N—H···O and O—H···O hydrogen bonds as dashed lines.

Crystal data

[Ni(C8H7N3)3]2[PMo12O40]·6H2O F(000) = 5644
Mr = 2918.76 Dx = 2.364 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 7216 reflections
a = 18.741 (4) Å θ = 1.7–25.0°
b = 16.285 (3) Å µ = 2.34 mm1
c = 27.678 (6) Å T = 293 K
β = 103.83 (3)° Block, green
V = 8202 (3) Å3 0.42 × 0.27 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 7216 independent reflections
Radiation source: fine-focus sealed tube 5310 reflections with I > 2σ(I)
graphite Rint = 0.062
phi and ω scans θmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −22→22
Tmin = 0.440, Tmax = 0.652 k = −17→19
22802 measured reflections l = −32→32

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.088P)2 + 10.3967P] where P = (Fo2 + 2Fc2)/3
7216 reflections (Δ/σ)max = 0.001
592 parameters Δρmax = 1.58 e Å3
18 restraints Δρmin = −0.67 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.2023 (14) 0.8990 (15) 0.0923 (9) 0.049 (6)
H1 0.2445 0.8942 0.0803 0.059*
C2 0.1420 (14) 0.9332 (15) 0.0634 (8) 0.051 (6)
H2 0.1428 0.9526 0.0320 0.062*
C3 0.0798 (15) 0.9396 (17) 0.0799 (9) 0.058 (7)
H3 0.0379 0.9631 0.0598 0.070*
C4 0.0790 (14) 0.9114 (18) 0.1261 (10) 0.061 (7)
H4 0.0365 0.9150 0.1378 0.073*
C5 0.1416 (12) 0.8778 (14) 0.1549 (8) 0.040 (5)
C6 0.1465 (13) 0.8481 (14) 0.2052 (8) 0.043 (6)
C7 0.0946 (16) 0.845 (2) 0.2344 (11) 0.074 (9)
H7 0.0455 0.8612 0.2257 0.089*
C8 0.135 (2) 0.813 (2) 0.2804 (11) 0.074 (9)
H8 0.1172 0.8038 0.3086 0.089*
C9 0.3232 (13) 0.9754 (14) 0.2567 (9) 0.047 (6)
H9 0.2895 0.9552 0.2735 0.056*
C10 0.3547 (16) 1.050 (2) 0.2699 (11) 0.061 (8)
H10 0.3434 1.0793 0.2959 0.073*
C11 0.4016 (19) 1.080 (2) 0.2455 (15) 0.090 (11)
H11 0.4226 1.1315 0.2542 0.108*
C12 0.4194 (14) 1.0371 (19) 0.2079 (10) 0.063 (7)
H12 0.4523 1.0577 0.1906 0.075*
C13 0.3872 (13) 0.9634 (16) 0.1968 (9) 0.052 (6)
C14 0.4049 (13) 0.9098 (17) 0.1581 (9) 0.051 (6)
C15 0.4550 (15) 0.919 (2) 0.1271 (12) 0.075 (10)
H15 0.4876 0.9621 0.1266 0.090*
C16 0.4433 (17) 0.848 (2) 0.0973 (12) 0.074 (9)
H16 0.4670 0.8339 0.0726 0.089*
C17 0.4107 (15) 0.7609 (19) 0.2864 (10) 0.060 (7)
H17 0.4164 0.8166 0.2938 0.072*
C18 0.4501 (18) 0.706 (2) 0.3200 (13) 0.082 (10)
H18 0.4809 0.7241 0.3496 0.099*
C19 0.443 (2) 0.625 (2) 0.3091 (14) 0.092 (11)
H19 0.4703 0.5868 0.3308 0.110*
C20 0.3948 (17) 0.5994 (19) 0.2644 (12) 0.078 (9)
H20 0.3882 0.5440 0.2564 0.094*
C21 0.3580 (14) 0.6586 (16) 0.2337 (10) 0.047 (6)
C22 0.3041 (14) 0.6382 (16) 0.1873 (9) 0.048 (6)
C23 0.2838 (17) 0.5645 (17) 0.1627 (10) 0.063 (8)
H23 0.3033 0.5127 0.1717 0.075*
C24 0.2287 (18) 0.5843 (17) 0.1221 (11) 0.069 (8)
H24 0.2030 0.5479 0.0984 0.083*
Ni1 0.29253 (16) 0.81664 (19) 0.19077 (11) 0.0411 (8)
Mo1 0.24269 (12) 0.14134 (13) 0.11084 (7) 0.0420 (6)
Mo2 0.19263 (12) 0.45800 (12) −0.01469 (8) 0.0417 (6)
Mo3 0.42259 (10) 0.31668 (12) −0.01927 (7) 0.0370 (6)
Mo4 0.35304 (11) 0.40513 (13) 0.07783 (7) 0.0388 (6)
Mo5 0.41654 (10) 0.19716 (13) 0.08814 (7) 0.0402 (6)
Mo6 0.17514 (11) 0.34583 (13) 0.09260 (7) 0.0385 (6)
N1 0.2031 (10) 0.8709 (11) 0.1392 (6) 0.038 (4)
N2 0.2102 (10) 0.8191 (12) 0.2297 (7) 0.043 (5)
N3 0.2020 (13) 0.7966 (15) 0.2756 (8) 0.056 (6)
H3A 0.2361 0.7749 0.2984 0.067*
N4 0.3392 (11) 0.9302 (13) 0.2204 (8) 0.049 (5)
N5 0.3682 (11) 0.8410 (13) 0.1487 (7) 0.048 (5)
N6 0.3924 (12) 0.8050 (16) 0.1113 (8) 0.066 (7)
H6 0.3760 0.7588 0.0981 0.079*
N7 0.3642 (10) 0.7388 (13) 0.2433 (7) 0.048 (5)
N8 0.2643 (11) 0.7011 (13) 0.1619 (7) 0.050 (5)
N9 0.2184 (12) 0.6674 (15) 0.1229 (8) 0.062 (6)
H9A 0.1865 0.6941 0.1011 0.074*
O1 0.4066 (11) 0.3947 (10) 0.0246 (6) 0.063 (5)
O2 0.1446 (9) 0.3914 (12) 0.1373 (6) 0.057 (5)
O3 0.2405 (9) 0.0897 (11) 0.1619 (6) 0.055 (5)
O4 0.3441 (11) 0.1729 (13) 0.1236 (8) 0.079 (7)
O5 0.4024 (11) 0.3112 (10) 0.1052 (7) 0.065 (6)
O6 0.2780 (9) 0.3874 (13) 0.1090 (7) 0.066 (5)
O7 0.4526 (11) 0.2417 (10) 0.0345 (6) 0.060 (5)
O8 0.4028 (11) 0.4785 (11) 0.1120 (7) 0.066 (5)
O9 0.4027 (11) 0.2166 (11) −0.0602 (7) 0.082 (7)
O10 0.5030 (9) 0.3438 (11) −0.0293 (7) 0.061 (5)
O11 0.2863 (9) 0.4671 (14) 0.0283 (7) 0.080 (7)
O12 0.1059 (11) 0.4001 (13) −0.0525 (7) 0.081 (7)
O13 0.1431 (12) 0.1324 (11) 0.0721 (8) 0.086 (8)
O14 0.1575 (9) 0.4236 (14) 0.0422 (7) 0.071 (6)
O15 0.1673 (10) 0.5557 (10) −0.0206 (7) 0.062 (5)
O16 0.2676 (12) 0.0575 (14) 0.0694 (8) 0.090 (7)
O17 0.2203 (11) 0.2506 (11) 0.1275 (7) 0.074 (6)
O18 0.4935 (9) 0.1738 (12) 0.1293 (6) 0.064 (5)
O19A 0.2028 (14) 0.2368 (16) 0.0390 (10) 0.029 (6) 0.50
O21A 0.3246 (13) 0.2799 (16) 0.0253 (10) 0.028 (6) 0.50
O19B 0.2904 (15) 0.1847 (16) 0.0376 (9) 0.031 (6) 0.50
O21B 0.2482 (14) 0.3299 (17) 0.0264 (9) 0.032 (6) 0.50
O1W 0.1158 (13) 0.7172 (16) 0.0399 (9) 0.099 (8)
O2W 0.358 (2) 0.653 (2) 0.0612 (15) 0.163 (12)
O3W 0.534 (3) 0.072 (3) 0.027 (2) 0.27 (2)
P1 0.2500 0.2500 0.0000 0.0252 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.054 (15) 0.049 (15) 0.045 (15) 0.001 (12) 0.013 (12) 0.011 (12)
C2 0.058 (17) 0.055 (15) 0.035 (12) −0.005 (13) 0.000 (12) 0.017 (11)
C3 0.045 (16) 0.075 (19) 0.047 (15) −0.005 (14) −0.005 (12) 0.010 (14)
C4 0.037 (15) 0.09 (2) 0.055 (16) 0.006 (14) 0.003 (12) 0.004 (15)
C5 0.032 (12) 0.038 (13) 0.048 (14) −0.011 (10) 0.007 (10) 0.003 (11)
C6 0.042 (14) 0.049 (14) 0.041 (13) −0.002 (11) 0.013 (11) 0.006 (11)
C7 0.047 (17) 0.11 (3) 0.07 (2) 0.013 (17) 0.020 (15) 0.014 (19)
C8 0.09 (2) 0.09 (2) 0.053 (19) −0.016 (19) 0.028 (18) 0.012 (16)
C9 0.052 (15) 0.043 (14) 0.045 (14) −0.003 (11) 0.009 (11) 0.000 (11)
C10 0.065 (19) 0.06 (2) 0.053 (17) −0.003 (16) 0.003 (14) −0.001 (16)
C11 0.08 (2) 0.09 (2) 0.09 (3) −0.001 (19) −0.01 (2) 0.02 (2)
C12 0.055 (16) 0.08 (2) 0.051 (16) −0.007 (15) 0.005 (13) 0.019 (15)
C13 0.034 (13) 0.062 (17) 0.054 (15) −0.010 (12) −0.003 (11) 0.016 (13)
C14 0.038 (13) 0.061 (17) 0.053 (15) 0.002 (12) 0.008 (11) 0.016 (13)
C15 0.040 (16) 0.10 (3) 0.08 (2) 0.005 (16) 0.010 (15) 0.05 (2)
C16 0.06 (2) 0.10 (2) 0.07 (2) 0.017 (17) 0.039 (16) 0.033 (18)
C17 0.057 (17) 0.06 (2) 0.057 (17) −0.006 (15) 0.006 (14) −0.005 (15)
C18 0.08 (2) 0.08 (2) 0.07 (2) 0.009 (19) −0.025 (18) 0.012 (19)
C19 0.10 (3) 0.08 (3) 0.09 (3) 0.03 (2) 0.00 (2) 0.03 (2)
C20 0.07 (2) 0.07 (2) 0.08 (2) 0.008 (16) −0.015 (17) 0.004 (17)
C21 0.046 (15) 0.054 (16) 0.042 (17) 0.008 (12) 0.010 (12) 0.005 (13)
C22 0.049 (15) 0.049 (16) 0.046 (14) 0.017 (13) 0.016 (12) 0.000 (13)
C23 0.08 (2) 0.052 (17) 0.052 (16) 0.023 (15) 0.014 (15) −0.005 (13)
C24 0.09 (2) 0.053 (17) 0.061 (19) −0.007 (16) 0.023 (17) −0.034 (14)
Ni1 0.0353 (16) 0.0469 (18) 0.0408 (17) 0.0041 (13) 0.0083 (13) 0.0042 (14)
Mo1 0.0552 (13) 0.0425 (12) 0.0281 (10) −0.0059 (10) 0.0094 (9) 0.0041 (9)
Mo2 0.0455 (12) 0.0313 (11) 0.0521 (13) 0.0059 (9) 0.0190 (10) 0.0026 (9)
Mo3 0.0258 (10) 0.0433 (12) 0.0418 (12) −0.0038 (8) 0.0081 (8) −0.0004 (9)
Mo4 0.0324 (11) 0.0423 (12) 0.0400 (11) −0.0070 (9) 0.0055 (8) −0.0093 (9)
Mo5 0.0286 (11) 0.0528 (13) 0.0353 (11) 0.0018 (9) 0.0003 (8) 0.0032 (9)
Mo6 0.0400 (12) 0.0457 (12) 0.0304 (10) 0.0085 (9) 0.0095 (8) −0.0063 (9)
N1 0.035 (10) 0.043 (11) 0.037 (10) 0.002 (8) 0.009 (8) 0.009 (8)
N2 0.040 (11) 0.054 (12) 0.034 (10) 0.004 (9) 0.008 (9) 0.005 (9)
N3 0.049 (14) 0.074 (17) 0.043 (13) −0.003 (12) 0.010 (11) 0.015 (12)
N4 0.041 (12) 0.047 (13) 0.058 (13) 0.000 (10) 0.009 (10) 0.014 (11)
N5 0.041 (12) 0.061 (14) 0.048 (12) 0.009 (10) 0.021 (10) 0.015 (10)
N6 0.053 (14) 0.084 (18) 0.061 (14) 0.029 (13) 0.014 (12) 0.010 (13)
N7 0.037 (11) 0.058 (14) 0.047 (12) 0.004 (10) 0.008 (9) 0.006 (10)
N8 0.054 (13) 0.056 (13) 0.036 (11) 0.008 (10) 0.003 (10) −0.006 (10)
N9 0.059 (15) 0.075 (18) 0.047 (13) 0.006 (12) 0.004 (11) 0.005 (12)
O1 0.100 (15) 0.048 (11) 0.055 (11) 0.024 (10) 0.045 (10) 0.010 (9)
O2 0.050 (10) 0.078 (14) 0.045 (10) 0.003 (9) 0.018 (8) −0.018 (9)
O3 0.058 (11) 0.069 (12) 0.035 (9) −0.003 (9) 0.005 (8) 0.018 (8)
O4 0.073 (14) 0.094 (16) 0.087 (15) −0.045 (12) 0.052 (12) −0.053 (12)
O5 0.104 (16) 0.049 (11) 0.055 (11) 0.026 (10) 0.044 (11) 0.012 (9)
O6 0.028 (9) 0.102 (15) 0.067 (12) 0.007 (9) 0.008 (8) 0.041 (11)
O7 0.095 (14) 0.045 (10) 0.050 (10) 0.022 (10) 0.041 (10) 0.008 (8)
O8 0.077 (13) 0.056 (12) 0.060 (13) −0.024 (10) 0.009 (10) −0.021 (10)
O9 0.091 (15) 0.043 (11) 0.077 (13) 0.018 (10) −0.048 (11) −0.013 (10)
O10 0.043 (10) 0.061 (12) 0.091 (14) −0.010 (9) 0.038 (10) −0.002 (10)
O11 0.038 (10) 0.129 (18) 0.077 (14) 0.007 (11) 0.021 (9) 0.057 (13)
O12 0.079 (14) 0.096 (16) 0.087 (14) −0.047 (12) 0.058 (12) −0.060 (12)
O13 0.095 (15) 0.036 (10) 0.089 (15) 0.017 (10) −0.051 (12) −0.014 (10)
O14 0.027 (9) 0.118 (17) 0.067 (13) 0.004 (10) 0.012 (9) 0.050 (12)
O15 0.064 (12) 0.031 (9) 0.090 (15) 0.011 (8) 0.015 (11) 0.012 (10)
O16 0.082 (13) 0.102 (15) 0.102 (14) −0.047 (12) 0.052 (11) −0.059 (12)
O17 0.078 (13) 0.044 (11) 0.075 (13) −0.002 (10) −0.033 (10) −0.003 (9)
O18 0.049 (11) 0.089 (15) 0.044 (10) 0.026 (10) −0.007 (8) 0.011 (10)
O19A 0.023 (14) 0.030 (15) 0.036 (15) −0.003 (11) 0.007 (11) −0.007 (12)
O21A 0.018 (13) 0.035 (15) 0.030 (15) 0.002 (11) 0.007 (11) 0.004 (12)
O19B 0.042 (16) 0.029 (15) 0.019 (14) 0.002 (12) 0.000 (12) 0.002 (11)
O21B 0.029 (15) 0.049 (17) 0.021 (13) 0.001 (12) 0.011 (11) −0.009 (12)
O1W 0.077 (15) 0.12 (2) 0.084 (16) 0.024 (14) −0.011 (12) −0.006 (14)
O2W 0.165 (13) 0.164 (13) 0.191 (13) −0.005 (3) 0.102 (4) −0.017 (3)
O3W 0.22 (2) 0.23 (2) 0.39 (2) 0.000 (3) 0.151 (6) −0.045 (3)
P1 0.026 (4) 0.026 (4) 0.023 (4) 0.001 (3) 0.004 (3) 0.000 (3)

Geometric parameters (Å, °)

C1—N1 1.37 (3) Mo2—O15 1.657 (16)
C1—C2 1.34 (3) Mo2—O16i 1.86 (2)
C1—H1 0.9300 Mo2—O11 1.876 (18)
C2—C3 1.35 (4) Mo2—O14 1.930 (18)
C2—H2 0.9300 Mo2—O12 1.952 (18)
C3—C4 1.36 (4) Mo2—O19Bi 2.45 (3)
C3—H3 0.9300 Mo2—O21B 2.48 (3)
C4—C5 1.37 (3) Mo3—O10 1.655 (16)
C4—H4 0.9300 Mo3—O1 1.831 (17)
C5—N1 1.33 (3) Mo3—O7 1.903 (16)
C5—C6 1.45 (3) Mo3—O13i 1.866 (17)
C6—N2 1.31 (3) Mo3—O9 1.969 (18)
C6—C7 1.41 (3) Mo3—O19Ai 2.44 (2)
C7—C8 1.42 (4) Mo3—O21A 2.52 (3)
C7—H7 0.9300 Mo4—O8 1.665 (16)
C8—N3 1.32 (4) Mo4—O6 1.840 (17)
C8—H8 0.9300 Mo4—O11 1.910 (18)
C9—N4 1.34 (3) Mo4—O5 1.853 (17)
C9—C10 1.36 (4) Mo4—O1 1.979 (17)
C9—H9 0.9300 Mo4—O21B 2.46 (3)
C10—C11 1.33 (4) Mo4—O21A 2.49 (3)
C10—H10 0.9300 Mo5—O18 1.655 (15)
C11—C12 1.36 (4) Mo5—O4 1.897 (18)
C11—H11 0.9300 Mo5—O5 1.950 (17)
C12—C13 1.35 (4) Mo5—O12i 1.860 (17)
C12—H12 0.9300 Mo5—O7 1.915 (16)
C13—N4 1.34 (3) Mo5—O19B 2.45 (3)
C13—C14 1.48 (4) Mo5—O21A 2.52 (2)
C14—N5 1.31 (3) Mo6—O2 1.658 (16)
C14—C15 1.42 (4) Mo6—O9i 1.828 (18)
C15—C16 1.41 (5) Mo6—O14 1.854 (17)
C15—H15 0.9300 Mo6—O17 1.914 (17)
C16—N6 1.31 (3) Mo6—O6 1.990 (17)
C16—H16 0.9300 Mo6—O19A 2.45 (3)
C17—N7 1.35 (3) Mo6—O21B 2.55 (2)
C17—C18 1.37 (4) N2—N3 1.37 (3)
C17—H17 0.9300 N3—H3A 0.8600
C18—C19 1.35 (4) N5—N6 1.36 (3)
C18—H18 0.9300 N6—H6 0.8600
C19—C20 1.41 (4) N8—N9 1.33 (3)
C19—H19 0.9300 N9—H9A 0.8600
C20—C21 1.36 (4) O9—Mo6i 1.828 (18)
C20—H20 0.9300 O12—Mo5i 1.860 (17)
C21—N7 1.33 (3) O13—Mo3i 1.866 (17)
C21—C22 1.47 (3) O16—Mo2i 1.86 (2)
C22—N8 1.36 (3) O19A—P1 1.57 (3)
C22—C23 1.39 (4) O19A—O21Ai 1.75 (4)
C23—C24 1.37 (4) O19A—O21B 1.81 (4)
C23—H23 0.9300 O19A—O19B 1.86 (4)
C24—N9 1.37 (3) O19A—Mo3i 2.44 (2)
C24—H24 0.9300 O21A—P1 1.49 (2)
Ni1—N5 2.077 (19) O21A—O21B 1.65 (4)
Ni1—N8 2.06 (2) O21A—O19B 1.74 (4)
Ni1—N2 2.084 (19) O21A—O19Ai 1.75 (4)
Ni1—N4 2.13 (2) O19B—P1 1.55 (3)
Ni1—N1 2.118 (17) O19B—O21Bi 1.76 (3)
Ni1—N7 2.14 (2) O19B—Mo2i 2.45 (3)
Mo1—O3 1.653 (15) O21B—P1 1.50 (3)
Mo1—O13 1.923 (19) O21B—O19Bi 1.76 (3)
Mo1—O16 1.91 (2) P1—O21Ai 1.49 (2)
Mo1—O17 1.911 (18) P1—O21Bi 1.50 (3)
Mo1—O4 1.919 (19) P1—O19Bi 1.55 (3)
Mo1—O19A 2.49 (3) P1—O19Ai 1.57 (3)
Mo1—O19B 2.50 (3)
N1—C1—C2 121 (2) O4—Mo5—O19B 64.3 (9)
N1—C1—H1 119.2 O5—Mo5—O19B 92.8 (9)
C2—C1—H1 119.6 O12i—Mo5—O19B 64.0 (9)
C3—C2—C1 120 (2) O7—Mo5—O19B 93.4 (9)
C3—C2—H2 120.0 O18—Mo5—O21A 159.4 (9)
C1—C2—H2 119.7 O4—Mo5—O21A 90.7 (10)
C2—C3—C4 120 (2) O5—Mo5—O21A 63.2 (8)
C2—C3—H3 120.3 O12i—Mo5—O21A 93.3 (10)
C4—C3—H3 120.1 O7—Mo5—O21A 64.7 (8)
C3—C4—C5 119 (3) O19B—Mo5—O21A 41.0 (8)
C3—C4—H4 120.6 O2—Mo6—O9i 103.8 (10)
C5—C4—H4 120.5 O2—Mo6—O14 103.0 (10)
N1—C5—C4 122 (2) O9i—Mo6—O14 91.9 (9)
N1—C5—C6 115.1 (19) O2—Mo6—O17 100.1 (10)
C4—C5—C6 123 (2) O9i—Mo6—O17 90.1 (7)
N2—C6—C7 111 (2) O14—Mo6—O17 155.6 (10)
N2—C6—C5 117 (2) O2—Mo6—O6 99.5 (9)
C7—C6—C5 132 (2) O9i—Mo6—O6 156.5 (10)
C6—C7—C8 104 (3) O14—Mo6—O6 85.9 (7)
C6—C7—H7 128.3 O17—Mo6—O6 82.7 (8)
C8—C7—H7 128.1 O2—Mo6—O19A 159.8 (9)
N3—C8—C7 107 (3) O9i—Mo6—O19A 63.8 (9)
N3—C8—H8 126.4 O14—Mo6—O19A 93.7 (10)
C7—C8—H8 126.1 O17—Mo6—O19A 65.6 (9)
N4—C9—C10 122 (3) O6—Mo6—O19A 92.9 (8)
N4—C9—H9 118.5 O2—Mo6—O21B 157.3 (9)
C10—C9—H9 119.4 O9i—Mo6—O21B 95.4 (10)
C11—C10—C9 120 (3) O14—Mo6—O21B 63.8 (9)
C11—C10—H10 120.2 O17—Mo6—O21B 91.8 (10)
C9—C10—H10 120.2 O6—Mo6—O21B 62.7 (8)
C10—C11—C12 121 (3) O19A—Mo6—O21B 42.5 (9)
C10—C11—H11 119.00 C5—N1—C1 117.9 (19)
C12—C11—H11 119.0 C5—N1—Ni1 114.9 (14)
C11—C12—C13 117 (3) C1—N1—Ni1 127.2 (15)
C11—C12—H12 121.4 C6—N2—N3 106.7 (19)
C13—C12—H12 121.5 C6—N2—Ni1 115.7 (15)
N4—C13—C12 124 (3) N3—N2—Ni1 137.5 (16)
N4—C13—C14 114 (2) C8—N3—N2 111 (2)
C12—C13—C14 122 (2) C8—N3—H3A 125.00
N5—C14—C15 111 (3) N2—N3—H3A 124.9
N5—C14—C13 117 (2) C13—N4—C9 116 (2)
C15—C14—C13 132 (3) C13—N4—Ni1 115.1 (18)
C14—C15—C16 103 (3) C9—N4—Ni1 128.6 (17)
C14—C15—H15 128.7 C14—N5—N6 105 (2)
C16—C15—H15 128.1 C14—N5—Ni1 116.7 (18)
N6—C16—C15 107 (3) N6—N5—Ni1 137.8 (19)
N6—C16—H16 126.0 N5—N6—C16 113 (3)
C15—C16—H16 127.2 N5—N6—H6 123.1
N7—C17—C18 124 (3) C16—N6—H6 123.7
N7—C17—H17 118.2 C21—N7—C17 117 (2)
C18—C17—H17 118.0 C21—N7—Ni1 115.7 (16)
C19—C18—C17 119 (3) C17—N7—Ni1 127.6 (19)
C19—C18—H18 120.8 C22—N8—N9 106 (2)
C17—C18—H18 120.7 C22—N8—Ni1 115.4 (16)
C18—C19—C20 120 (3) N9—N8—Ni1 138.5 (17)
C18—C19—H19 120.9 C24—N9—N8 111 (2)
C20—C19—H19 121.00 C24—N9—H9A 124.5
C21—C20—C19 117 (3) N8—N9—H9A 124.7
C21—C20—H20 120.8 Mo3—O1—Mo4 138.2 (11)
C19—C20—H20 121.8 Mo5—O4—Mo1 139.5 (12)
N7—C21—C20 124 (3) Mo5—O5—Mo4 140.4 (11)
N7—C21—C22 114 (2) Mo4—O6—Mo6 138.9 (11)
C20—C21—C22 122 (3) Mo3—O7—Mo5 139.2 (10)
N8—C22—C23 110 (2) Mo6i—O9—Mo3 139.6 (13)
N8—C22—C21 117 (2) Mo4—O11—Mo2 140.0 (12)
C23—C22—C21 133 (2) Mo5i—O12—Mo2 138.5 (12)
C22—C23—C24 105 (2) Mo1—O13—Mo3i 140.7 (13)
C22—C23—H23 127.8 Mo6—O14—Mo2 141.1 (11)
C24—C23—H23 126.9 Mo2i—O16—Mo1 142.1 (13)
N9—C24—C23 108 (2) Mo1—O17—Mo6 136.8 (11)
N9—C24—H24 127.0 P1—O19A—O21Ai 53.0 (11)
C23—C24—H24 125.4 P1—O19A—O21B 52.0 (11)
N5—Ni1—N8 95.9 (9) O21Ai—O19A—O21B 88.4 (17)
N5—Ni1—N2 167.4 (8) P1—O19A—O19B 53.1 (11)
N8—Ni1—N2 93.7 (8) O21Ai—O19A—O19B 87.3 (16)
N5—Ni1—N4 77.1 (9) O21B—O19A—O19B 85.4 (16)
N8—Ni1—N4 170.8 (8) P1—O19A—Mo3i 124.6 (14)
N2—Ni1—N4 94.1 (8) O21Ai—O19A—Mo3i 71.6 (12)
N5—Ni1—N1 94.5 (7) O21B—O19A—Mo3i 136.6 (16)
N8—Ni1—N1 91.8 (7) O19B—O19A—Mo3i 129.8 (15)
N2—Ni1—N1 77.1 (7) P1—O19A—Mo6 123.7 (14)
N4—Ni1—N1 94.8 (7) O21Ai—O19A—Mo6 132.5 (16)
N5—Ni1—N7 95.3 (7) O21B—O19A—Mo6 71.7 (11)
N8—Ni1—N7 77.6 (8) O19B—O19A—Mo6 131.4 (14)
N2—Ni1—N7 94.7 (7) Mo3i—O19A—Mo6 93.6 (9)
N4—Ni1—N7 96.9 (8) P1—O19A—Mo1 121.6 (13)
N1—Ni1—N7 166.2 (7) O21Ai—O19A—Mo1 132.3 (16)
O3—Mo1—O13 102.6 (10) O21B—O19A—Mo1 127.5 (15)
O3—Mo1—O16 102.1 (10) O19B—O19A—Mo1 68.5 (11)
O13—Mo1—O16 87.4 (9) Mo3i—O19A—Mo1 92.6 (9)
O3—Mo1—O17 102.4 (9) Mo6—O19A—Mo1 92.0 (9)
O13—Mo1—O17 88.0 (7) P1—O21A—O21B 56.6 (12)
O16—Mo1—O17 155.5 (10) P1—O21A—O19B 56.8 (12)
O3—Mo1—O4 101.8 (9) O21B—O21A—O19B 94.2 (18)
O13—Mo1—O4 155.5 (10) P1—O21A—O19Ai 57.1 (12)
O16—Mo1—O4 85.9 (8) O21B—O21A—O19Ai 92.9 (17)
O17—Mo1—O4 88.3 (9) O19B—O21A—O19Ai 91.6 (17)
O3—Mo1—O19A 159.1 (9) P1—O21A—Mo3 124.1 (14)
O13—Mo1—O19A 62.4 (9) O21B—O21A—Mo3 128.9 (16)
O16—Mo1—O19A 92.1 (10) O19B—O21A—Mo3 130.8 (16)
O17—Mo1—O19A 64.6 (8) O19Ai—O21A—Mo3 67.1 (12)
O4—Mo1—O19A 94.3 (9) P1—O21A—Mo4 126.1 (14)
O3—Mo1—O19B 157.2 (9) O21B—O21A—Mo4 69.5 (13)
O13—Mo1—O19B 93.2 (10) O19B—O21A—Mo4 130.8 (16)
O16—Mo1—O19B 62.0 (9) O19Ai—O21A—Mo4 133.7 (16)
O17—Mo1—O19B 94.3 (9) Mo3—O21A—Mo4 90.7 (8)
O4—Mo1—O19B 62.9 (9) P1—O21A—Mo5 124.0 (14)
O19A—Mo1—O19B 43.6 (8) O21B—O21A—Mo5 134.5 (16)
O15—Mo2—O16i 102.2 (10) O19B—O21A—Mo5 67.3 (12)
O15—Mo2—O11 100.8 (10) O19Ai—O21A—Mo5 127.1 (15)
O16i—Mo2—O11 91.7 (9) Mo3—O21A—Mo5 90.4 (8)
O15—Mo2—O14 102.3 (9) Mo4—O21A—Mo5 91.1 (8)
O16i—Mo2—O14 155.2 (10) P1—O19B—O21A 53.3 (12)
O11—Mo2—O14 87.5 (8) P1—O19B—O21Bi 53.3 (12)
O15—Mo2—O12 103.3 (10) O21A—O19B—O21Bi 90.3 (17)
O16i—Mo2—O12 86.7 (8) P1—O19B—O19A 53.8 (12)
O11—Mo2—O12 155.6 (10) O21A—O19B—O19A 88.1 (16)
O14—Mo2—O12 83.9 (8) O21Bi—O19B—O19A 86.0 (16)
O15—Mo2—O19Bi 159.6 (9) P1—O19B—Mo2i 123.3 (13)
O16i—Mo2—O19Bi 63.8 (10) O21A—O19B—Mo2i 135.8 (17)
O11—Mo2—O19Bi 94.5 (10) O21Bi—O19B—Mo2i 70.1 (12)
O14—Mo2—O19Bi 91.5 (9) O19A—O19B—Mo2i 127.6 (15)
O12—Mo2—O19Bi 63.0 (9) P1—O19B—Mo5 125.1 (14)
O15—Mo2—O21B 158.5 (9) O21A—O19B—Mo5 71.8 (12)
O16i—Mo2—O21B 93.1 (10) O21Bi—O19B—Mo5 133.9 (17)
O11—Mo2—O21B 63.2 (9) O19A—O19B—Mo5 133.4 (15)
O14—Mo2—O21B 64.5 (8) Mo2i—O19B—Mo5 93.4 (9)
O12—Mo2—O21B 92.5 (10) P1—O19B—Mo1 121.6 (15)
O19Bi—Mo2—O21B 41.9 (8) O21A—O19B—Mo1 128.9 (15)
O10—Mo3—O1 103.0 (9) O21Bi—O19B—Mo1 129.5 (16)
O10—Mo3—O7 101.0 (9) O19A—O19B—Mo1 67.9 (12)
O1—Mo3—O7 89.5 (7) Mo2i—O19B—Mo1 92.1 (9)
O10—Mo3—O13i 101.9 (11) Mo5—O19B—Mo1 92.5 (8)
O1—Mo3—O13i 91.7 (8) P1—O21B—O21A 56.1 (13)
O7—Mo3—O13i 156.1 (10) P1—O21B—O19Bi 56.2 (12)
O10—Mo3—O9 100.3 (10) O21A—O21B—O19Bi 93.6 (17)
O1—Mo3—O9 156.6 (10) P1—O21B—O19A 55.5 (12)
O7—Mo3—O9 84.2 (7) O21A—O21B—O19A 92.3 (18)
O13i—Mo3—O9 85.3 (7) O19Bi—O21B—O19A 88.9 (17)
O10—Mo3—O19Ai 157.4 (9) P1—O21B—Mo4 127.4 (15)
O1—Mo3—O19Ai 95.4 (9) O21A—O21B—Mo4 71.4 (13)
O7—Mo3—O19Ai 92.0 (9) O19Bi—O21B—Mo4 136.7 (17)
O13i—Mo3—O19Ai 64.2 (10) O19A—O21B—Mo4 130.8 (15)
O9—Mo3—O19Ai 62.4 (9) P1—O21B—Mo2 124.2 (14)
O10—Mo3—O21A 160.9 (9) O21A—O21B—Mo2 132.5 (17)
O1—Mo3—O21A 65.6 (8) O19Bi—O21B—Mo2 68.0 (12)
O7—Mo3—O21A 65.0 (8) O19A—O21B—Mo2 128.7 (15)
O13i—Mo3—O21A 93.9 (10) Mo4—O21B—Mo2 92.1 (9)
O9—Mo3—O21A 91.4 (10) P1—O21B—Mo6 121.2 (15)
O19Ai—Mo3—O21A 41.3 (8) O21A—O21B—Mo6 132.8 (16)
O8—Mo4—O6 103.5 (10) O19Bi—O21B—Mo6 125.1 (16)
O8—Mo4—O11 102.2 (10) O19A—O21B—Mo6 65.8 (11)
O6—Mo4—O11 88.7 (7) Mo4—O21B—Mo6 91.5 (8)
O8—Mo4—O5 101.7 (10) Mo2—O21B—Mo6 90.3 (9)
O6—Mo4—O5 92.4 (8) O21A—P1—O21Ai 180 (3)
O11—Mo4—O5 155.2 (10) O21A—P1—O21B 67.3 (14)
O8—Mo4—O1 99.8 (9) O21Ai—P1—O21B 112.7 (14)
O6—Mo4—O1 156.4 (9) O21A—P1—O21Bi 112.7 (14)
O11—Mo4—O1 82.6 (8) O21Ai—P1—O21Bi 67.3 (14)
O5—Mo4—O1 86.6 (7) O21B—P1—O21Bi 180.0 (19)
O8—Mo4—O21B 161.4 (9) O21A—P1—O19B 69.9 (14)
O6—Mo4—O21B 66.3 (8) O21Ai—P1—O19B 110.1 (14)
O11—Mo4—O21B 63.4 (9) O21B—P1—O19B 109.4 (14)
O5—Mo4—O21B 94.4 (9) O21Bi—P1—O19B 70.6 (14)
O1—Mo4—O21B 90.2 (8) O21A—P1—O19Bi 110.1 (14)
O8—Mo4—O21A 159.0 (9) O21Ai—P1—O19Bi 69.9 (14)
O6—Mo4—O21A 93.7 (9) O21B—P1—O19Bi 70.6 (14)
O11—Mo4—O21A 90.1 (9) O21Bi—P1—O19Bi 109.4 (14)
O5—Mo4—O21A 65.1 (8) O19B—P1—O19Bi 180 (2)
O1—Mo4—O21A 64.6 (8) O21A—P1—O19A 110.1 (13)
O21B—Mo4—O21A 39.1 (8) O21Ai—P1—O19A 69.9 (13)
O18—Mo5—O4 102.1 (10) O21B—P1—O19A 72.5 (14)
O18—Mo5—O5 101.5 (9) O21Bi—P1—O19A 107.5 (14)
O4—Mo5—O5 85.3 (8) O19B—P1—O19A 73.1 (14)
O18—Mo5—O12i 102.6 (10) O19Bi—P1—O19A 106.9 (14)
O4—Mo5—O12i 89.9 (8) O21A—P1—O19Ai 69.9 (13)
O5—Mo5—O12i 155.9 (10) O21Ai—P1—O19Ai 110.1 (13)
O18—Mo5—O7 102.1 (9) O21B—P1—O19Ai 107.5 (14)
O4—Mo5—O7 155.3 (9) O21Bi—P1—O19Ai 72.5 (14)
O5—Mo5—O7 85.4 (7) O19B—P1—O19Ai 106.9 (14)
O12i—Mo5—O7 89.3 (8) O19Bi—P1—O19Ai 73.1 (14)
O18—Mo5—O19B 159.6 (10) O19A—P1—O19Ai 180 (2)

Symmetry codes: (i) −x+1/2, −y+1/2, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O17ii 0.86 2.05 2.83 (3) 149
N6—H6···O2W 0.86 1.99 2.84 (5) 166
N9—H9A···O1W 0.86 1.92 2.74 (3) 160

Symmetry codes: (ii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2306).

References

  1. Artero, V. & Proust, A. (2000). Eur. J. Inorg. Chem., pp. 2393–2400
  2. Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Hao, L., Liu, T., Chen, J. & Zhang, X. (2010). Acta Cryst. E66, m283–m284. [DOI] [PMC free article] [PubMed]
  5. Hao, L., Ma, C., Chen, J., Zhang, X. & Zhang, X. (2010). Acta Cryst. E66, m231–m232. [DOI] [PMC free article] [PubMed]
  6. Hao, L., Wang, Y., Zhang, X., Chen, J. & Zhang, X. (2010). Acta Cryst. E66, m268–m269. [DOI] [PMC free article] [PubMed]
  7. Kurmoo, M., Bonamico, M., Bellitto, C., Fares, V., Federici, F., Guionneau, P., Ducasse, L., Kitagawa, H. & Day, P. (1998). Adv. Mater.7, 545–550.
  8. Niu, J. Y., Shan, B. Z. & You, X. Z. (1999). Transition Met. Chem.24, 108–114
  9. Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed.30, 34–38.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Yang, W. B., Lu, C. Z., Wu, C. D. & Zhuang, H. H. (2003). Chin. J. Struct. Chem.22, 137–142.
  12. Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325–3332.
  13. Zhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des.9, 4424–4428.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810005945/wm2306sup1.cif

e-66-0m319-sup1.cif (34.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005945/wm2306Isup2.hkl

e-66-0m319-Isup2.hkl (353.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES