Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 10;66(Pt 3):o579. doi: 10.1107/S1600536810004514

(E)-N′-(2,4,5-Trifluorobenzyl­idene)isonicotinohydrazide monohydrate

H S Naveenkumar a, Amirin Sadikun a,, Pazilah Ibrahim a, Chin Sing Yeap b,§, Hoong-Kun Fun b,*,
PMCID: PMC2983744  PMID: 21580346

Abstract

In the Schiff base mol­ecule of the title compound, C13H8F3N3O·H2O, the benzene ring and the pyridine ring are nearly coplanar, making a dihedral angle of 6.64 (7)°. The mol­ecule exists in an E configuration with respect to the C=N double bond. In the crystal structure, mol­ecules are linked via the water mol­ecules into two-dimensional planes parallel to the ab plane through inter­molecular N—H⋯O, O—H⋯O O—H⋯N and C—H⋯O hydrogen bonds.

Related literature

For applications of isoniazid (isonicotinylhydrazine) derivatives, see: Janin (2007); Maccari et al. (2005); Slayden & Barry (2000); Kahwa et al. (1986). For the preparation of the title compound, see: Lourenco et al. (2008). For related structures, see: Naveenkumar et al. (2009, 2010); Shi (2005).graphic file with name e-66-0o579-scheme1.jpg

Experimental

Crystal data

  • C13H8F3N3O·H2O

  • M r = 297.24

  • Triclinic, Inline graphic

  • a = 4.9241 (1) Å

  • b = 6.3915 (1) Å

  • c = 21.3387 (2) Å

  • α = 88.616 (1)°

  • β = 86.556 (1)°

  • γ = 76.056 (1)°

  • V = 650.58 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.32 × 0.32 × 0.13 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.958, T max = 0.984

  • 14710 measured reflections

  • 4024 independent reflections

  • 2730 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.146

  • S = 1.05

  • 4024 reflections

  • 230 parameters

  • All H-atom parameters refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810004514/sj2725sup1.cif

e-66-0o579-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004514/sj2725Isup2.hkl

e-66-0o579-Isup2.hkl (197.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1W 0.883 (19) 1.921 (19) 2.7910 (13) 168.1 (16)
O1W—H1W1⋯O1i 0.79 (2) 2.03 (2) 2.8263 (17) 176.3 (18)
O1W—H2W1⋯O1ii 0.84 (2) 2.19 (2) 2.9670 (17) 155 (2)
O1W—H2W1⋯N1ii 0.84 (2) 2.47 (2) 3.1024 (14) 133.7 (19)
C7—H7A⋯O1W 0.967 (13) 2.492 (14) 3.2576 (16) 135.9 (12)
C13—H13A⋯O1W 0.963 (19) 2.427 (18) 3.3308 (19) 156.2 (14)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This research was supported by Universiti Sains Malaysia (USM) under the University Research Grant (1001/PFARMASI/815005). HSNK and CSY each thank USM for the award of a USM Fellowship. HKF and CSY thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012).

supplementary crystallographic information

Comment

In the search for new biologically active compounds, isoniazid (isonicotinylhydrazine) derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). As part of our current work on the synthesis of (E)-N'-substituted isonicotinohydrazide derivatives, in this paper we present the crystal structure of the title compound, (I).

The asymmetric unit consists of one Schiff base molecule and one water molecule (Fig. 1). The geometric parameters are comparable to those related structures (Naveenkumar et al., 2009, 2010; Shi, 2005). The molecule is nearly coplanar with a dihedral angle between the benzene ring and the pyridine ring of 6.64 (7)°. The molecule exists in an E configuration with respect to the C7=N1 double bond. In the crystal structure, the water molecules link the molecules into two-dimensional planes parallel to the ab plane through intermolecular N–H···O, O–H···O O–H···N and C–H···O hydrogen bonds (Fig. 2, Table 1).

Experimental

The isoniazid derivative was prepared following a procedure reported by Lourenco et al., (2008). 2,4,5-triflurobenzaldehyde (1.0 eq) was added to isoniazid (1.0 eq) in ethanol/water. After stirring for 1-3 h at room temperature, the resulting mixture was concentrated under reduced pressure. The residue was purified by washing with cold ethanol and diethyl ether to give the pure derivative. Colourless single crystals suitable for X-ray analysis were obtained by re-crystallization from methanol.

Refinement

All hydrogen atoms were located from the difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed down the a axis, showing the molecules are linked into 2-dimensional planes parallel to the ab plane. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C13H8F3N3O·H2O Z = 2
Mr = 297.24 F(000) = 304
Triclinic, P1 Dx = 1.517 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 4.9241 (1) Å Cell parameters from 6031 reflections
b = 6.3915 (1) Å θ = 2.9–30.8°
c = 21.3387 (2) Å µ = 0.13 mm1
α = 88.616 (1)° T = 296 K
β = 86.556 (1)° Plate, colourless
γ = 76.056 (1)° 0.32 × 0.32 × 0.13 mm
V = 650.58 (2) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4024 independent reflections
Radiation source: fine-focus sealed tube 2730 reflections with I > 2σ(I)
graphite Rint = 0.022
φ and ω scans θmax = 30.8°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −6→7
Tmin = 0.958, Tmax = 0.984 k = −9→9
14710 measured reflections l = −30→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146 All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0764P)2 + 0.0515P] where P = (Fo2 + 2Fc2)/3
4024 reflections (Δ/σ)max < 0.001
230 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 1.20930 (18) 0.63383 (14) 0.34682 (4) 0.0667 (3)
F2 1.2581 (2) 1.19398 (18) 0.48033 (4) 0.0824 (3)
F3 0.8111 (2) 1.44958 (15) 0.42966 (5) 0.0834 (3)
O1 0.1646 (2) 1.24750 (13) 0.19113 (5) 0.0552 (3)
N1 0.5532 (2) 1.00798 (15) 0.25981 (4) 0.0386 (2)
N2 0.4249 (2) 0.91747 (15) 0.21550 (4) 0.0377 (2)
N3 −0.1882 (3) 0.7926 (2) 0.04246 (6) 0.0592 (3)
C1 1.1071 (3) 0.8366 (2) 0.36730 (6) 0.0431 (3)
C2 1.2389 (3) 0.9080 (3) 0.41488 (6) 0.0532 (3)
C3 1.1375 (3) 1.1151 (3) 0.43436 (6) 0.0533 (3)
C4 0.9082 (3) 1.2479 (2) 0.40781 (6) 0.0520 (3)
C5 0.7792 (3) 1.1753 (2) 0.36057 (6) 0.0465 (3)
C6 0.8779 (2) 0.96531 (19) 0.33900 (5) 0.0381 (3)
C7 0.7429 (2) 0.87952 (19) 0.28944 (5) 0.0391 (3)
C8 0.2279 (2) 1.05161 (17) 0.18276 (5) 0.0381 (3)
C9 0.0888 (2) 0.95209 (18) 0.13457 (5) 0.0381 (3)
C10 −0.1271 (3) 1.0858 (2) 0.10359 (6) 0.0469 (3)
C11 −0.2587 (3) 0.9994 (3) 0.05883 (6) 0.0549 (3)
C12 0.0208 (4) 0.6670 (3) 0.07203 (7) 0.0645 (4)
C13 0.1642 (3) 0.7368 (2) 0.11825 (7) 0.0555 (4)
O1W 0.6042 (3) 0.46898 (15) 0.22162 (5) 0.0567 (3)
H2A 1.388 (4) 0.807 (3) 0.4315 (9) 0.079 (5)*
H5A 0.619 (4) 1.275 (3) 0.3436 (8) 0.069 (5)*
H7A 0.798 (3) 0.727 (2) 0.2805 (7) 0.054 (4)*
H10A −0.178 (3) 1.237 (3) 0.1110 (7) 0.061 (4)*
H11A −0.398 (4) 1.092 (3) 0.0388 (8) 0.069 (5)*
H12A 0.087 (4) 0.519 (3) 0.0585 (9) 0.084 (6)*
H13A 0.316 (4) 0.636 (3) 0.1371 (8) 0.073 (5)*
H1N2 0.479 (3) 0.776 (3) 0.2116 (8) 0.067 (5)*
H1W1 0.759 (4) 0.402 (3) 0.2127 (8) 0.071 (6)*
H2W1 0.499 (4) 0.384 (4) 0.2232 (10) 0.099 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0610 (5) 0.0571 (5) 0.0724 (6) 0.0110 (4) −0.0253 (4) −0.0153 (4)
F2 0.0779 (6) 0.1120 (8) 0.0649 (6) −0.0278 (6) −0.0330 (5) −0.0306 (5)
F3 0.0999 (8) 0.0612 (5) 0.0897 (7) −0.0114 (5) −0.0295 (6) −0.0347 (5)
O1 0.0565 (6) 0.0337 (4) 0.0772 (6) −0.0068 (4) −0.0346 (5) −0.0034 (4)
N1 0.0405 (5) 0.0378 (5) 0.0402 (5) −0.0114 (4) −0.0145 (4) −0.0050 (4)
N2 0.0408 (5) 0.0331 (5) 0.0412 (5) −0.0087 (4) −0.0177 (4) −0.0039 (4)
N3 0.0653 (8) 0.0712 (8) 0.0501 (6) −0.0285 (6) −0.0241 (5) −0.0041 (6)
C1 0.0381 (6) 0.0491 (7) 0.0410 (6) −0.0062 (5) −0.0103 (5) −0.0040 (5)
C2 0.0407 (7) 0.0730 (9) 0.0446 (7) −0.0073 (6) −0.0172 (5) −0.0031 (6)
C3 0.0490 (7) 0.0758 (9) 0.0409 (6) −0.0220 (7) −0.0140 (5) −0.0131 (6)
C4 0.0593 (8) 0.0503 (7) 0.0499 (7) −0.0161 (6) −0.0125 (6) −0.0129 (5)
C5 0.0492 (7) 0.0431 (6) 0.0480 (7) −0.0086 (5) −0.0183 (5) −0.0049 (5)
C6 0.0377 (6) 0.0422 (6) 0.0367 (5) −0.0119 (4) −0.0110 (4) −0.0020 (4)
C7 0.0411 (6) 0.0361 (5) 0.0415 (6) −0.0091 (4) −0.0139 (5) −0.0039 (4)
C8 0.0372 (6) 0.0355 (5) 0.0442 (6) −0.0107 (4) −0.0138 (5) −0.0013 (4)
C9 0.0378 (6) 0.0433 (6) 0.0375 (6) −0.0153 (5) −0.0126 (4) −0.0005 (4)
C10 0.0449 (7) 0.0509 (7) 0.0451 (7) −0.0084 (5) −0.0161 (5) −0.0017 (5)
C11 0.0484 (7) 0.0724 (9) 0.0459 (7) −0.0138 (7) −0.0216 (6) 0.0011 (6)
C12 0.0858 (11) 0.0528 (8) 0.0630 (9) −0.0250 (8) −0.0335 (8) −0.0060 (7)
C13 0.0671 (9) 0.0427 (7) 0.0603 (8) −0.0132 (6) −0.0322 (7) −0.0036 (6)
O1W 0.0608 (7) 0.0322 (4) 0.0771 (7) −0.0067 (4) −0.0194 (5) −0.0063 (4)

Geometric parameters (Å, °)

F1—C1 1.3454 (15) C5—C6 1.3922 (17)
F2—C3 1.3445 (13) C5—H5A 0.969 (18)
F3—C4 1.3463 (16) C6—C7 1.4660 (14)
O1—C8 1.2299 (13) C7—H7A 0.965 (15)
N1—C7 1.2737 (15) C8—C9 1.5025 (14)
N1—N2 1.3791 (11) C9—C13 1.3835 (17)
N2—C8 1.3477 (14) C9—C10 1.3843 (17)
N2—H1N2 0.881 (18) C10—C11 1.3821 (17)
N3—C12 1.326 (2) C10—H10A 0.953 (16)
N3—C11 1.3324 (19) C11—H11A 0.911 (19)
C1—C2 1.3800 (17) C12—C13 1.3882 (17)
C1—C6 1.3877 (16) C12—H12A 0.966 (19)
C2—C3 1.363 (2) C13—H13A 0.963 (18)
C2—H2A 0.93 (2) O1W—H1W1 0.79 (2)
C3—C4 1.381 (2) O1W—H2W1 0.83 (2)
C4—C5 1.3699 (16)
C7—N1—N2 116.55 (9) N1—C7—C6 118.93 (10)
C8—N2—N1 117.36 (9) N1—C7—H7A 121.8 (9)
C8—N2—H1N2 126.2 (11) C6—C7—H7A 119.2 (9)
N1—N2—H1N2 116.5 (11) O1—C8—N2 122.04 (9)
C12—N3—C11 116.24 (11) O1—C8—C9 120.84 (10)
F1—C1—C2 118.25 (11) N2—C8—C9 117.12 (9)
F1—C1—C6 118.70 (10) C13—C9—C10 117.67 (10)
C2—C1—C6 123.04 (12) C13—C9—C8 124.60 (10)
C3—C2—C1 117.80 (12) C10—C9—C8 117.72 (10)
C3—C2—H2A 126.1 (11) C11—C10—C9 119.15 (12)
C1—C2—H2A 116.1 (11) C11—C10—H10A 119.8 (9)
F2—C3—C2 120.48 (12) C9—C10—H10A 121.0 (9)
F2—C3—C4 118.53 (13) N3—C11—C10 123.93 (13)
C2—C3—C4 120.99 (11) N3—C11—H11A 119.1 (11)
F3—C4—C5 120.41 (12) C10—C11—H11A 116.9 (11)
F3—C4—C3 118.89 (11) N3—C12—C13 124.42 (14)
C5—C4—C3 120.70 (12) N3—C12—H12A 117.9 (11)
C4—C5—C6 120.06 (12) C13—C12—H12A 117.5 (11)
C4—C5—H5A 117.3 (10) C9—C13—C12 118.58 (13)
C6—C5—H5A 122.7 (10) C9—C13—H13A 121.8 (10)
C1—C6—C5 117.41 (10) C12—C13—H13A 119.6 (10)
C1—C6—C7 120.67 (11) H1W1—O1W—H2W1 108.0 (19)
C5—C6—C7 121.89 (10)
C7—N1—N2—C8 −178.64 (11) N2—N1—C7—C6 −177.37 (10)
F1—C1—C2—C3 178.60 (12) C1—C6—C7—N1 −172.44 (12)
C6—C1—C2—C3 −0.2 (2) C5—C6—C7—N1 9.12 (19)
C1—C2—C3—F2 −179.70 (12) N1—N2—C8—O1 0.66 (18)
C1—C2—C3—C4 0.8 (2) N1—N2—C8—C9 −179.99 (9)
F2—C3—C4—F3 −1.2 (2) O1—C8—C9—C13 174.03 (13)
C2—C3—C4—F3 178.33 (14) N2—C8—C9—C13 −5.32 (19)
F2—C3—C4—C5 179.61 (13) O1—C8—C9—C10 −4.90 (18)
C2—C3—C4—C5 −0.8 (2) N2—C8—C9—C10 175.74 (11)
F3—C4—C5—C6 −178.86 (13) C13—C9—C10—C11 0.8 (2)
C3—C4—C5—C6 0.3 (2) C8—C9—C10—C11 179.78 (12)
F1—C1—C6—C5 −179.11 (12) C12—N3—C11—C10 0.3 (2)
C2—C1—C6—C5 −0.3 (2) C9—C10—C11—N3 −1.0 (2)
F1—C1—C6—C7 2.38 (18) C11—N3—C12—C13 0.7 (3)
C2—C1—C6—C7 −178.84 (12) C10—C9—C13—C12 0.1 (2)
C4—C5—C6—C1 0.3 (2) C8—C9—C13—C12 −178.85 (13)
C4—C5—C6—C7 178.75 (12) N3—C12—C13—C9 −0.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···O1W 0.883 (19) 1.921 (19) 2.7910 (13) 168.1 (16)
O1W—H1W1···O1i 0.79 (2) 2.03 (2) 2.8263 (17) 176.3 (18)
O1W—H2W1···O1ii 0.84 (2) 2.19 (2) 2.9670 (17) 155 (2)
O1W—H2W1···N1ii 0.84 (2) 2.47 (2) 3.1024 (14) 133.7 (19)
C7—H7A···O1W 0.967 (13) 2.492 (14) 3.2576 (16) 135.9 (12)
C13—H13A···O1W 0.963 (19) 2.427 (18) 3.3308 (19) 156.2 (14)

Symmetry codes: (i) x+1, y−1, z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2725).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Janin, Y. L. (2007). Bioorg. Med. Chem.15, 2479–2513. [DOI] [PubMed]
  3. Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta.118, 179–185.
  4. Lourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem.43, 1344–1347. [DOI] [PubMed]
  5. Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett.15, 2509–2513. [DOI] [PubMed]
  6. Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2540–o2541. [DOI] [PMC free article] [PubMed]
  7. Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o291. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Shi, J. (2005). Acta Cryst. E61, o3933–o3934.
  10. Slayden, R. A. & Barry, C. E. (2000). Microbes Infect.2, 659–669. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810004514/sj2725sup1.cif

e-66-0o579-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004514/sj2725Isup2.hkl

e-66-0o579-Isup2.hkl (197.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES