Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 6;66(Pt 3):o551. doi: 10.1107/S1600536810004150

Bis(2,6-diamino­pyridinium) hydrogen phthalate nitrate monohydrate

Akbar Raissi Shabari a, Maryam Safaeimovahed a, Mehrdad Pourayoubi b,*
PMCID: PMC2983748  PMID: 21580321

Abstract

The title hydrated salt, 2C5H8N3 +·C8H5O4 ·NO3 ·H2O, was obtained fortuitously from the reaction between 2,6-diamino­pyridine, phthalic acid and Co(NO3)2·6H2O at 343 K. The asymmetric unit consists of two crystallographically independent 2,6-diamino­pyridinium cations, a hydrogen phthalate anion, a nitrate ion and a water mol­ecule of crystallization which in the crystal structure are linked by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds into a three-dimensional network. In the hydrogen phthalate anion, there is a very strong intra­molecular O—H⋯O hydrogen bond.

Related literature

For a related structure, see: Al-Dajani et al. (2009). For a study of strong O—H⋯O hydrogen bonds, see: Gilli et al. (1994). graphic file with name e-66-0o551-scheme1.jpg

Experimental

Crystal data

  • 2C5H8N3 +·C8H5O4 ·NO3 ·H2O

  • M r = 465.43

  • Monoclinic, Inline graphic

  • a = 3.6923 (3) Å

  • b = 37.857 (3) Å

  • c = 14.8415 (10) Å

  • β = 95.111 (2)°

  • V = 2066.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 120 K

  • 0.29 × 0.26 × 0.22 mm

Data collection

  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.966, T max = 0.974

  • 15097 measured reflections

  • 2737 independent reflections

  • 2309 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.093

  • S = 1.01

  • 2737 reflections

  • 298 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810004150/lh2987sup1.cif

e-66-0o551-sup1.cif (21.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004150/lh2987Isup2.hkl

e-66-0o551-Isup2.hkl (134.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 1.13 1.25 2.373 (4) 173
N1—H1NA⋯O1 0.90 2.10 2.950 (4) 157
N1—H1NB⋯O5 0.90 2.06 2.940 (4) 165
N2—H2NA⋯O1 0.90 2.48 3.259 (4) 146
N2—H2NA⋯O2 0.90 2.00 2.846 (3) 157
N3—H3NB⋯O5i 0.90 2.09 2.921 (4) 154
N3—H3NA⋯O2 0.90 2.25 3.074 (4) 153
N4—H4NA⋯O3ii 0.90 2.18 2.979 (4) 147
N4—H4NB⋯O6 0.90 2.02 2.891 (4) 163
N5—H5NA⋯O3ii 0.90 2.35 3.167 (4) 150
N5—H5NA⋯O4ii 0.90 2.07 2.889 (4) 150
N6—H6NB⋯O1Wiii 0.90 1.98 2.825 (4) 157
N6—H6NA⋯O4ii 0.90 2.21 2.988 (4) 144
O1W—H1WA⋯O6iv 0.85 1.99 2.834 (4) 169
O1W—H1WB⋯O6 0.85 2.59 3.258 (4) 136
O1W—H1WB⋯O7 0.85 2.06 2.885 (3) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Support of this investigation by Islamic Azad University-North Tehran Branch is gratefully acknowledged.

supplementary crystallographic information

Comment

In previous work, the crystal structure of tetrakis(2,6-diaminopyridinium) diphthalate 2,6-diaminopyridine (Al-Dajani et al., 2009) was investigated; we report here on the synthesis and crystal structure of a new proton-transfer salt of 2,6-diaminopyridine and phthalic acid. In the title compound (Fig. 1), phthalic acid is mono-deprotonated while the two 2,6-diaminopyridine components are protonated at the pyridine nitrogen atom. The two 2,6-diaminopyridinium cations are crystallographically independent. In the mono-anion, there is a very strong intramolecular [O—H···O]- hydrogen bond (O1···O3 = 2.373 (4) Å) which is a result of the negative charge-assisted effect described by Gilli et al. (1994). The cations, anions and water molecules are liked into a 3-D network by O—H···O and N—H···O hydrogen bonds. A view of crystal packing is shown in Fig. 2.

Experimental

The title compound was prepared according to the following procedure: A solution of phthalic acid (0.83 g, 5 mmol) in H2O (20 ml) was added to a solution of 2,6-diaminopyridine (0.545 g, 5 mmol) in H2O (5 ml) and stirred. To this solution, a solution of Co(NO3)2.6H2O (1.45 g, 5 mmol) in H2O (5 ml) was added and stirred at 343 K (20 minutes). The mixture was filtered and single crystals were obtained after slow evaporation at room temperature. IR (KBr, cm-1): 3436, 2347, 1650, 1385, 1053, 984, 773, 731, 485.

Refinement

In the absence of significant anomalous dispersion effects the Friedel pairs were merged. H atoms were placed in calculated positions with C-H = 0.95, N-H = 0.90 and O-H = 0.84Å. The hydroxyl H atom of the hydrogen phthalate anion was included in an 'as found' position. All H atoms were included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title hydrated salt, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. The hydrogen bonds are shown by dashed lines.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines.

Crystal data

2C5H8N3+·C8H5O4·NO3·H2O F(000) = 976
Mr = 465.43 Dx = 1.496 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 5008 reflections
a = 3.6923 (3) Å θ = 2.2–27.2°
b = 37.857 (3) Å µ = 0.12 mm1
c = 14.8415 (10) Å T = 120 K
β = 95.111 (2)° Prism, colorless
V = 2066.3 (3) Å3 0.29 × 0.26 × 0.22 mm
Z = 4

Data collection

Bruker SMART 1000 diffractometer 2737 independent reflections
Radiation source: fine-focus sealed tube 2309 reflections with I > 2σ(I)
graphite Rint = 0.034
φ and ω scans θmax = 29.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −5→5
Tmin = 0.966, Tmax = 0.974 k = −50→49
15097 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: mixed
wR(F2) = 0.093 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.02P)2 + 3.5P] where P = (Fo2 + 2Fc2)/3
2737 reflections (Δ/σ)max < 0.001
298 parameters Δρmax = 0.26 e Å3
2 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.6231 (8) 0.17540 (6) 0.49397 (18) 0.0283 (6)
H1NA 0.4475 0.1658 0.4557 0.034*
H1NB 0.6041 0.1721 0.5534 0.034*
N2 0.6881 (7) 0.22109 (6) 0.39298 (16) 0.0229 (5)
H2NA 0.5601 0.2072 0.3525 0.027*
N3 0.7201 (9) 0.26246 (7) 0.28055 (19) 0.0355 (7)
H3NB 0.7787 0.2848 0.2672 0.043*
H3NA 0.6032 0.2454 0.2473 0.043*
C1 0.7408 (8) 0.20826 (8) 0.4790 (2) 0.0229 (6)
C2 0.9210 (9) 0.22967 (8) 0.5452 (2) 0.0268 (6)
H2A 0.9646 0.2217 0.6059 0.032*
C3 1.0348 (8) 0.26286 (8) 0.5202 (2) 0.0274 (6)
H3A 1.1589 0.2775 0.5649 0.033*
C4 0.9751 (8) 0.27550 (8) 0.4329 (2) 0.0269 (6)
H4A 1.0539 0.2984 0.4177 0.032*
C5 0.7960 (8) 0.25365 (8) 0.3679 (2) 0.0253 (6)
N4 0.5267 (8) 0.09027 (7) 0.51218 (19) 0.0296 (6)
H4NA 0.6869 0.0988 0.4753 0.036*
H4NB 0.5352 0.1036 0.5625 0.036*
N5 0.4276 (7) 0.03920 (7) 0.42957 (18) 0.0258 (5)
H5NA 0.5180 0.0520 0.3857 0.031*
N6 0.3504 (8) −0.00825 (7) 0.33294 (19) 0.0331 (6)
H6NB 0.2189 −0.0275 0.3158 0.040*
H6NA 0.4457 0.0043 0.2893 0.040*
C6 0.4164 (8) 0.05637 (8) 0.5096 (2) 0.0251 (6)
C7 0.2886 (9) 0.03842 (8) 0.5820 (2) 0.0283 (6)
H7A 0.2777 0.0497 0.6389 0.034*
C8 0.1770 (8) 0.00351 (9) 0.5693 (2) 0.0295 (7)
H8A 0.0886 −0.0090 0.6184 0.035*
C9 0.1914 (9) −0.01353 (9) 0.4870 (2) 0.0294 (7)
H9A 0.1147 −0.0374 0.4797 0.035*
C10 0.3200 (8) 0.00492 (8) 0.4155 (2) 0.0255 (6)
O1 0.1534 (7) 0.15535 (7) 0.33076 (16) 0.0377 (6)
H1 0.0380 0.1279 0.3375 0.057*
O2 0.3398 (7) 0.19199 (6) 0.23096 (17) 0.0367 (6)
O3 −0.1237 (7) 0.09909 (7) 0.34030 (16) 0.0388 (6)
O4 −0.3587 (7) 0.05715 (7) 0.25269 (18) 0.0429 (6)
C11 0.1856 (8) 0.16417 (8) 0.2484 (2) 0.0269 (6)
C12 0.0332 (7) 0.14044 (8) 0.1715 (2) 0.0204 (6)
C13 0.0674 (8) 0.15452 (8) 0.0853 (2) 0.0232 (6)
H13A 0.1735 0.1773 0.0811 0.028*
C14 −0.0452 (8) 0.13698 (8) 0.0067 (2) 0.0263 (6)
H14A −0.0135 0.1472 −0.0505 0.032*
C15 −0.2063 (8) 0.10402 (8) 0.0126 (2) 0.0273 (6)
H15A −0.2905 0.0916 −0.0409 0.033*
C16 −0.2436 (8) 0.08934 (8) 0.0964 (2) 0.0248 (6)
H16A −0.3498 0.0666 0.0994 0.030*
C17 −0.1311 (8) 0.10676 (8) 0.1768 (2) 0.0225 (6)
C18 −0.2081 (9) 0.08613 (9) 0.2609 (2) 0.0295 (7)
N7 0.5255 (8) 0.14787 (7) 0.72886 (18) 0.0307 (6)
O5 0.4868 (8) 0.17644 (6) 0.68613 (17) 0.0419 (6)
O6 0.6450 (7) 0.12132 (6) 0.69036 (16) 0.0392 (6)
O7 0.4512 (7) 0.14595 (6) 0.80893 (16) 0.0380 (6)
O1W 0.0932 (8) 0.07824 (6) 0.81011 (18) 0.0400 (6)
H1WA −0.0387 0.0932 0.7797 0.060*
H1WB 0.2333 0.0959 0.8075 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0383 (15) 0.0226 (13) 0.0237 (13) −0.0027 (11) 0.0010 (11) 0.0000 (10)
N2 0.0276 (13) 0.0200 (12) 0.0211 (12) −0.0015 (10) 0.0019 (10) −0.0023 (10)
N3 0.0520 (18) 0.0264 (14) 0.0270 (14) −0.0091 (13) −0.0020 (13) 0.0015 (11)
C1 0.0223 (14) 0.0206 (14) 0.0261 (15) 0.0022 (11) 0.0042 (11) −0.0003 (11)
C2 0.0310 (16) 0.0269 (15) 0.0221 (14) 0.0018 (13) −0.0002 (12) −0.0017 (12)
C3 0.0277 (16) 0.0256 (15) 0.0285 (16) 0.0016 (12) −0.0001 (12) −0.0091 (12)
C4 0.0264 (15) 0.0223 (15) 0.0324 (16) −0.0007 (12) 0.0044 (12) −0.0023 (13)
C5 0.0285 (15) 0.0226 (15) 0.0254 (15) 0.0014 (12) 0.0056 (12) 0.0002 (12)
N4 0.0385 (15) 0.0230 (13) 0.0276 (13) −0.0039 (11) 0.0042 (11) −0.0019 (10)
N5 0.0293 (13) 0.0210 (12) 0.0273 (13) −0.0020 (10) 0.0030 (10) 0.0032 (10)
N6 0.0440 (17) 0.0260 (14) 0.0295 (14) −0.0065 (12) 0.0047 (12) −0.0026 (11)
C6 0.0248 (15) 0.0225 (14) 0.0282 (15) 0.0034 (11) 0.0025 (12) 0.0022 (12)
C7 0.0304 (16) 0.0299 (16) 0.0247 (15) 0.0028 (13) 0.0038 (12) 0.0012 (13)
C8 0.0273 (16) 0.0299 (17) 0.0318 (16) 0.0018 (13) 0.0053 (13) 0.0099 (13)
C9 0.0306 (17) 0.0255 (15) 0.0322 (16) −0.0006 (13) 0.0035 (13) 0.0053 (13)
C10 0.0239 (14) 0.0231 (15) 0.0292 (16) 0.0027 (12) 0.0016 (11) 0.0030 (12)
O1 0.0485 (15) 0.0380 (13) 0.0262 (12) −0.0022 (11) 0.0012 (10) −0.0044 (10)
O2 0.0404 (14) 0.0301 (12) 0.0397 (14) −0.0112 (10) 0.0042 (11) −0.0086 (10)
O3 0.0516 (16) 0.0393 (14) 0.0259 (12) −0.0030 (12) 0.0065 (11) 0.0062 (11)
O4 0.0471 (15) 0.0370 (14) 0.0444 (15) −0.0143 (12) 0.0021 (12) 0.0138 (12)
C11 0.0233 (15) 0.0267 (15) 0.0307 (16) 0.0016 (12) 0.0028 (12) −0.0067 (13)
C12 0.0178 (13) 0.0211 (13) 0.0224 (13) 0.0033 (10) 0.0010 (10) −0.0017 (11)
C13 0.0225 (14) 0.0206 (13) 0.0269 (14) 0.0023 (11) 0.0040 (11) 0.0025 (12)
C14 0.0276 (16) 0.0293 (15) 0.0224 (14) 0.0060 (12) 0.0039 (12) 0.0036 (12)
C15 0.0258 (15) 0.0299 (16) 0.0257 (15) 0.0043 (12) −0.0012 (12) −0.0067 (12)
C16 0.0226 (15) 0.0195 (13) 0.0316 (16) 0.0001 (11) −0.0014 (12) −0.0008 (12)
C17 0.0212 (14) 0.0238 (14) 0.0232 (14) 0.0028 (11) 0.0049 (11) 0.0007 (11)
C18 0.0257 (16) 0.0310 (16) 0.0318 (16) 0.0052 (13) 0.0021 (12) 0.0072 (13)
N7 0.0372 (16) 0.0307 (14) 0.0239 (14) 0.0012 (12) 0.0004 (11) −0.0044 (11)
O5 0.0644 (18) 0.0302 (13) 0.0324 (13) 0.0097 (12) 0.0118 (12) 0.0070 (10)
O6 0.0564 (16) 0.0311 (13) 0.0299 (13) 0.0120 (11) 0.0019 (11) −0.0063 (10)
O7 0.0551 (17) 0.0352 (14) 0.0243 (11) −0.0027 (12) 0.0071 (11) −0.0020 (10)
O1W 0.0516 (16) 0.0255 (12) 0.0431 (14) 0.0061 (11) 0.0053 (12) 0.0075 (10)

Geometric parameters (Å, °)

N1—C1 1.343 (4) C8—C9 1.386 (5)
N1—H1NA 0.8999 C8—H8A 0.9500
N1—H1NB 0.9001 C9—C10 1.390 (4)
N2—C5 1.358 (4) C9—H9A 0.9500
N2—C1 1.364 (4) O1—C11 1.283 (4)
N2—H2NA 0.9000 O1—H1 1.1299
N3—C5 1.343 (4) O2—C11 1.235 (4)
N3—H3NB 0.8998 O3—C18 1.289 (4)
N3—H3NA 0.8998 O3—H1 1.2468
C1—C2 1.396 (4) O4—C18 1.231 (4)
C2—C3 1.386 (4) C11—C12 1.520 (4)
C2—H2A 0.9500 C12—C13 1.402 (4)
C3—C4 1.379 (4) C12—C17 1.417 (4)
C3—H3A 0.9500 C13—C14 1.374 (4)
C4—C5 1.393 (4) C13—H13A 0.9500
C4—H4A 0.9500 C14—C15 1.389 (5)
N4—C6 1.346 (4) C14—H14A 0.9500
N4—H4NA 0.9000 C15—C16 1.381 (4)
N4—H4NB 0.9001 C15—H15A 0.9500
N5—C6 1.358 (4) C16—C17 1.393 (4)
N5—C10 1.368 (4) C16—H16A 0.9500
N5—H5NA 0.9000 C17—C18 1.520 (4)
N6—C10 1.336 (4) N7—O7 1.245 (3)
N6—H6NB 0.8996 N7—O6 1.255 (3)
N6—H6NA 0.8999 N7—O5 1.256 (4)
C6—C7 1.389 (4) O1W—H1WA 0.8497
C7—C8 1.392 (5) O1W—H1WB 0.8496
C7—H7A 0.9500
C1—N1—H1NA 119.7 C9—C8—C7 121.8 (3)
C1—N1—H1NB 110.2 C9—C8—H8A 119.1
H1NA—N1—H1NB 116.7 C7—C8—H8A 119.1
C5—N2—C1 124.0 (3) C8—C9—C10 118.8 (3)
C5—N2—H2NA 119.7 C8—C9—H9A 120.6
C1—N2—H2NA 116.2 C10—C9—H9A 120.6
C5—N3—H3NB 114.3 N6—C10—N5 116.6 (3)
C5—N3—H3NA 113.5 N6—C10—C9 125.1 (3)
H3NB—N3—H3NA 131.9 N5—C10—C9 118.3 (3)
N1—C1—N2 117.6 (3) C11—O1—H1 113.1
N1—C1—C2 124.3 (3) C18—O3—H1 112.4
N2—C1—C2 118.1 (3) O2—C11—O1 120.4 (3)
C3—C2—C1 118.4 (3) O2—C11—C12 119.5 (3)
C3—C2—H2A 120.8 O1—C11—C12 120.1 (3)
C1—C2—H2A 120.8 C13—C12—C17 117.8 (3)
C4—C3—C2 122.6 (3) C13—C12—C11 113.8 (3)
C4—C3—H3A 118.7 C17—C12—C11 128.5 (3)
C2—C3—H3A 118.7 C14—C13—C12 123.1 (3)
C3—C4—C5 118.1 (3) C14—C13—H13A 118.5
C3—C4—H4A 120.9 C12—C13—H13A 118.5
C5—C4—H4A 120.9 C13—C14—C15 118.7 (3)
N3—C5—N2 116.7 (3) C13—C14—H14A 120.7
N3—C5—C4 124.5 (3) C15—C14—H14A 120.7
N2—C5—C4 118.8 (3) C16—C15—C14 119.7 (3)
C6—N4—H4NA 122.5 C16—C15—H15A 120.1
C6—N4—H4NB 123.2 C14—C15—H15A 120.1
H4NA—N4—H4NB 109.1 C15—C16—C17 122.3 (3)
C6—N5—C10 123.8 (3) C15—C16—H16A 118.8
C6—N5—H5NA 114.7 C17—C16—H16A 118.8
C10—N5—H5NA 121.5 C16—C17—C12 118.4 (3)
C10—N6—H6NB 118.3 C16—C17—C18 113.4 (3)
C10—N6—H6NA 122.2 C12—C17—C18 128.3 (3)
H6NB—N6—H6NA 117.4 O4—C18—O3 120.0 (3)
N4—C6—N5 116.7 (3) O4—C18—C17 119.5 (3)
N4—C6—C7 124.5 (3) O3—C18—C17 120.5 (3)
N5—C6—C7 118.8 (3) O7—N7—O6 120.3 (3)
C6—C7—C8 118.5 (3) O7—N7—O5 120.5 (3)
C6—C7—H7A 120.8 O6—N7—O5 119.2 (3)
C8—C7—H7A 120.8 H1WA—O1W—H1WB 76.9
C5—N2—C1—N1 −179.3 (3) O2—C11—C12—C13 −3.8 (4)
C5—N2—C1—C2 −0.9 (4) O1—C11—C12—C13 176.1 (3)
N1—C1—C2—C3 178.7 (3) O2—C11—C12—C17 175.6 (3)
N2—C1—C2—C3 0.4 (4) O1—C11—C12—C17 −4.5 (5)
C1—C2—C3—C4 0.4 (5) C17—C12—C13—C14 −1.0 (4)
C2—C3—C4—C5 −0.6 (5) C11—C12—C13—C14 178.5 (3)
C1—N2—C5—N3 −179.3 (3) C12—C13—C14—C15 1.1 (4)
C1—N2—C5—C4 0.7 (4) C13—C14—C15—C16 −1.2 (4)
C3—C4—C5—N3 −179.9 (3) C14—C15—C16—C17 1.3 (5)
C3—C4—C5—N2 0.1 (4) C15—C16—C17—C12 −1.2 (4)
C10—N5—C6—N4 −179.0 (3) C15—C16—C17—C18 178.4 (3)
C10—N5—C6—C7 0.0 (4) C13—C12—C17—C16 1.0 (4)
N4—C6—C7—C8 178.8 (3) C11—C12—C17—C16 −178.4 (3)
N5—C6—C7—C8 −0.1 (4) C13—C12—C17—C18 −178.5 (3)
C6—C7—C8—C9 0.2 (5) C11—C12—C17—C18 2.1 (5)
C7—C8—C9—C10 −0.2 (5) C16—C17—C18—O4 −0.5 (4)
C6—N5—C10—N6 −179.5 (3) C12—C17—C18—O4 179.0 (3)
C6—N5—C10—C9 0.0 (4) C16—C17—C18—O3 −179.1 (3)
C8—C9—C10—N6 179.6 (3) C12—C17—C18—O3 0.4 (5)
C8—C9—C10—N5 0.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O3 1.13 1.25 2.373 (4) 173
N1—H1NA···O1 0.90 2.10 2.950 (4) 157
N1—H1NB···O5 0.90 2.06 2.940 (4) 165
N2—H2NA···O1 0.90 2.48 3.259 (4) 146
N2—H2NA···O2 0.90 2.00 2.846 (3) 157
N3—H3NB···O5i 0.90 2.09 2.921 (4) 154
N3—H3NA···O2 0.90 2.25 3.074 (4) 153
N4—H4NA···O3ii 0.90 2.18 2.979 (4) 147
N4—H4NB···O6 0.90 2.02 2.891 (4) 163
N5—H5NA···O3ii 0.90 2.35 3.167 (4) 150
N5—H5NA···O4ii 0.90 2.07 2.889 (4) 150
N6—H6NB···O1Wiii 0.90 1.98 2.825 (4) 157
N6—H6NA···O4ii 0.90 2.21 2.988 (4) 144
O1W—H1WA···O6iv 0.85 1.99 2.834 (4) 169
O1W—H1WB···O6 0.85 2.59 3.258 (4) 136
O1W—H1WB···O7 0.85 2.06 2.885 (3) 165

Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) x+1, y, z; (iii) x, −y, z−1/2; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2987).

References

  1. Al-Dajani, M. T. M., Salhin, A., Mohamed, N., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2931–o2932. [DOI] [PMC free article] [PubMed]
  2. Bruker (1998). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc.116, 909–915.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810004150/lh2987sup1.cif

e-66-0o551-sup1.cif (21.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004150/lh2987Isup2.hkl

e-66-0o551-Isup2.hkl (134.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES