Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 6;66(Pt 4):o752. doi: 10.1107/S1600536810007531

2-Chloro-N′-(2,4-dichloro­benzyl­idene)benzohydrazide

Cong-Shan Zhou a, Tao Yang a,*
PMCID: PMC2983764  PMID: 21580597

Abstract

The title Schiff base compound, C14H9Cl3N2O, exists in a trans configuration with respect to the C=N bond and the dihedral angle between the two benzene rings is 13.5 (2)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds link adjacent mol­ecules into extended C(4) chains propagating along the c-axis direction.

Related literature

For a related structure and background material, see the previous paper: Zhou & Yang (2010).graphic file with name e-66-0o752-scheme1.jpg

Experimental

Crystal data

  • C14H9Cl3N2O

  • M r = 327.58

  • Monoclinic, Inline graphic

  • a = 7.4737 (11) Å

  • b = 25.877 (4) Å

  • c = 8.1833 (12) Å

  • β = 116.013 (2)°

  • V = 1422.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.867, T max = 0.883

  • 7752 measured reflections

  • 2828 independent reflections

  • 2066 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.121

  • S = 1.02

  • 2828 reflections

  • 184 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810007531/hb5344sup1.cif

e-66-0o752-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007531/hb5344Isup2.hkl

e-66-0o752-Isup2.hkl (138.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.89 (1) 2.00 (1) 2.864 (3) 164 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge support of this project by Hunan Provincial Natural Science Foundation of China Scientific Research (09JJ6022) and the Fund of Hunan Provincial Education Department (08B031), People’s Republic of China.

supplementary crystallographic information

Comment

As part of our ongoing studies of Schiff bases (Zhou & Yang, 2010), the crystal structure of the title Schiff base, (I), derived from the condensing of 2,4-dichlorobenzaldehyde with 2-chlorobenzohydrazide in methanol is reported.

The molecule exists in a trans configuration with respect to the acyclic C═N bond. The molecule of the compound is distorted, with the dihedral angle between the two benzene rings of 13.5 (2)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds link adjacent molecules into extended chains along the c axis (Table 1 and Fig. 2).

Experimental

2,4-Dichlorobenzaldehyde (1.0 mmol, 175 mg) and 2-chlorobenzohydrazide (1.0 mmol, 170 mg) were dissolved in a methanol solution (30 ml). The mixture was stirred for 30 min at room temperature. The resulting solution was left in air for a few days, yielding colourless blocks of (I).

Refinement

H2 attached to N2 was located in a difference map and refined with N—H distance restrained to 0.90 (1)Å. The remaining H atoms were positioned geometrically, with C—H distances of 0.93 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The packing of (I), viewed along the a axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

C14H9Cl3N2O F(000) = 664
Mr = 327.58 Dx = 1.530 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2111 reflections
a = 7.4737 (11) Å θ = 3.0–24.9°
b = 25.877 (4) Å µ = 0.64 mm1
c = 8.1833 (12) Å T = 298 K
β = 116.013 (2)° Block, colourless
V = 1422.3 (4) Å3 0.23 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer 2828 independent reflections
Radiation source: fine-focus sealed tube 2066 reflections with I > 2σ(I)
graphite Rint = 0.029
ω scans θmax = 26.2°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→7
Tmin = 0.867, Tmax = 0.883 k = −28→32
7752 measured reflections l = −10→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.7512P] where P = (Fo2 + 2Fc2)/3
2828 reflections (Δ/σ)max = 0.001
184 parameters Δρmax = 0.59 e Å3
1 restraint Δρmin = −0.36 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.19289 (14) 0.55576 (3) 0.33995 (10) 0.0770 (3)
Cl2 0.73603 (12) 0.52632 (3) 1.02156 (11) 0.0691 (3)
Cl3 0.07212 (14) 0.90788 (3) 0.33033 (13) 0.0715 (3)
H2 0.076 (5) 0.7358 (12) 0.209 (2) 0.080*
N1 0.1947 (3) 0.71586 (8) 0.4668 (3) 0.0436 (5)
N2 0.0880 (3) 0.74638 (8) 0.3170 (3) 0.0435 (5)
O1 0.0219 (3) 0.80567 (7) 0.4865 (2) 0.0554 (5)
C1 0.3509 (4) 0.63513 (10) 0.5759 (3) 0.0395 (6)
C2 0.3470 (4) 0.58197 (10) 0.5493 (3) 0.0438 (6)
C3 0.4627 (4) 0.54838 (10) 0.6852 (4) 0.0477 (7)
H3 0.4554 0.5129 0.6648 0.057*
C4 0.5895 (4) 0.56846 (11) 0.8522 (3) 0.0450 (6)
C5 0.6012 (4) 0.62076 (11) 0.8836 (4) 0.0482 (7)
H5 0.6895 0.6339 0.9961 0.058*
C6 0.4815 (4) 0.65335 (10) 0.7478 (3) 0.0444 (6)
H6 0.4874 0.6887 0.7707 0.053*
C7 0.2298 (4) 0.67024 (10) 0.4305 (3) 0.0421 (6)
H7 0.1777 0.6593 0.3102 0.051*
C8 0.0076 (4) 0.79055 (9) 0.3394 (3) 0.0419 (6)
C9 −0.1100 (4) 0.81908 (10) 0.1658 (3) 0.0421 (6)
C10 −0.0930 (4) 0.87193 (11) 0.1520 (4) 0.0510 (7)
C11 −0.2088 (6) 0.89765 (13) −0.0095 (5) 0.0675 (9)
H11 −0.1944 0.9331 −0.0191 0.081*
C12 −0.3438 (6) 0.87046 (16) −0.1536 (5) 0.0769 (11)
H12 −0.4230 0.8879 −0.2606 0.092*
C13 −0.3653 (5) 0.81802 (15) −0.1446 (4) 0.0701 (10)
H13 −0.4571 0.8003 −0.2454 0.084*
C14 −0.2510 (4) 0.79142 (13) 0.0140 (3) 0.0557 (8)
H14 −0.2663 0.7559 0.0211 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0824 (6) 0.0591 (5) 0.0504 (5) 0.0065 (4) −0.0068 (4) −0.0140 (4)
Cl2 0.0573 (5) 0.0710 (5) 0.0564 (5) 0.0074 (4) 0.0042 (4) 0.0240 (4)
Cl3 0.0819 (6) 0.0509 (4) 0.0903 (6) −0.0115 (4) 0.0457 (5) −0.0095 (4)
N1 0.0532 (13) 0.0462 (13) 0.0320 (11) 0.0056 (10) 0.0192 (10) 0.0040 (9)
N2 0.0597 (14) 0.0440 (12) 0.0296 (11) 0.0123 (10) 0.0221 (11) 0.0046 (9)
O1 0.0890 (15) 0.0477 (11) 0.0363 (10) 0.0098 (10) 0.0336 (10) 0.0001 (8)
C1 0.0392 (14) 0.0470 (14) 0.0319 (13) 0.0031 (11) 0.0150 (11) 0.0036 (11)
C2 0.0406 (15) 0.0472 (15) 0.0359 (13) 0.0019 (12) 0.0098 (12) −0.0017 (11)
C3 0.0454 (16) 0.0423 (14) 0.0488 (16) 0.0026 (12) 0.0146 (13) 0.0042 (12)
C4 0.0354 (14) 0.0539 (16) 0.0402 (14) 0.0002 (12) 0.0116 (12) 0.0112 (12)
C5 0.0448 (16) 0.0601 (18) 0.0333 (13) −0.0106 (13) 0.0111 (12) 0.0018 (12)
C6 0.0513 (16) 0.0429 (14) 0.0354 (13) −0.0045 (12) 0.0156 (12) −0.0007 (11)
C7 0.0495 (16) 0.0469 (15) 0.0302 (13) 0.0044 (12) 0.0177 (12) 0.0002 (11)
C8 0.0527 (16) 0.0413 (14) 0.0368 (13) 0.0014 (12) 0.0244 (12) 0.0023 (11)
C9 0.0534 (16) 0.0450 (14) 0.0378 (14) 0.0112 (12) 0.0291 (13) 0.0059 (11)
C10 0.0623 (18) 0.0494 (16) 0.0565 (17) 0.0091 (13) 0.0401 (15) 0.0056 (13)
C11 0.089 (3) 0.0591 (19) 0.072 (2) 0.0241 (18) 0.052 (2) 0.0227 (17)
C12 0.093 (3) 0.093 (3) 0.058 (2) 0.045 (2) 0.045 (2) 0.029 (2)
C13 0.069 (2) 0.096 (3) 0.0420 (17) 0.0223 (19) 0.0210 (16) −0.0035 (17)
C14 0.0590 (18) 0.076 (2) 0.0337 (14) 0.0234 (15) 0.0219 (14) 0.0061 (13)

Geometric parameters (Å, °)

Cl1—C2 1.729 (3) C5—C6 1.369 (4)
Cl2—C4 1.726 (3) C5—H5 0.9300
Cl3—C10 1.714 (3) C6—H6 0.9300
N1—C7 1.272 (3) C7—H7 0.9300
N1—N2 1.380 (3) C8—C9 1.497 (3)
N2—C8 1.341 (3) C9—C10 1.383 (4)
N2—H2 0.893 (10) C9—C14 1.420 (4)
O1—C8 1.225 (3) C10—C11 1.391 (4)
C1—C2 1.391 (4) C11—C12 1.364 (5)
C1—C6 1.396 (3) C11—H11 0.9300
C1—C7 1.454 (3) C12—C13 1.372 (5)
C2—C3 1.377 (3) C12—H12 0.9300
C3—C4 1.378 (4) C13—C14 1.384 (4)
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.373 (4) C14—H14 0.9300
C7—N1—N2 114.9 (2) N1—C7—H7 119.8
C8—N2—N1 119.05 (19) C1—C7—H7 119.8
C8—N2—H2 123 (2) O1—C8—N2 123.7 (2)
N1—N2—H2 118 (2) O1—C8—C9 122.5 (2)
C2—C1—C6 116.7 (2) N2—C8—C9 113.8 (2)
C2—C1—C7 121.8 (2) C10—C9—C14 119.1 (2)
C6—C1—C7 121.5 (2) C10—C9—C8 121.9 (2)
C3—C2—C1 122.3 (2) C14—C9—C8 118.9 (2)
C3—C2—Cl1 117.5 (2) C9—C10—C11 120.6 (3)
C1—C2—Cl1 120.12 (19) C9—C10—Cl3 121.6 (2)
C2—C3—C4 118.6 (2) C11—C10—Cl3 117.7 (2)
C2—C3—H3 120.7 C12—C11—C10 119.4 (3)
C4—C3—H3 120.7 C12—C11—H11 120.3
C5—C4—C3 121.1 (2) C10—C11—H11 120.3
C5—C4—Cl2 120.4 (2) C11—C12—C13 121.6 (3)
C3—C4—Cl2 118.4 (2) C11—C12—H12 119.2
C6—C5—C4 119.3 (2) C13—C12—H12 119.2
C6—C5—H5 120.4 C12—C13—C14 120.2 (3)
C4—C5—H5 120.4 C12—C13—H13 119.9
C5—C6—C1 122.0 (2) C14—C13—H13 119.9
C5—C6—H6 119.0 C13—C14—C9 119.1 (3)
C1—C6—H6 119.0 C13—C14—H14 120.5
N1—C7—C1 120.4 (2) C9—C14—H14 120.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1i 0.89 (1) 2.00 (1) 2.864 (3) 164 (3)

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5344).

References

  1. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Zhou, C.-S. & Yang, T. (2010). Acta Cryst.E66, o751. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810007531/hb5344sup1.cif

e-66-0o752-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007531/hb5344Isup2.hkl

e-66-0o752-Isup2.hkl (138.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES