Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 31;66(Pt 4):o992. doi: 10.1107/S1600536810011542

2-Methyl-3-(n-octylsulfan­yl)quinoxaline

Youssef Ramli a, Rachid Slimani b, Hafid Zouihri c, Saïd Lazar b,*, E M Essassi d
PMCID: PMC2983786  PMID: 21580788

Abstract

All the non-H atoms of the title compound, C17H24N2S, lie almost in a common plane (r.m.s. deviation = 0.049 Å). The octyl chain adopts an all-trans conformation.

Related literature

For the biological activity of quinoxaline derivatives, see: Kleim et al. (1995). For the anti­tumor and anti­tuberculous properties of quinoxaline derivatives, see: Abasolo et al. (1987); Rodrigo et al. (2002). For the anti­fungal, herbicidal, anti­dyslipidemic and anti-oxidative activity of quinoxaline derivatives, see: Jampilek et al. (2005); Sashidhara et al. (2009); Watkins et al. (2009).graphic file with name e-66-0o992-scheme1.jpg

Experimental

Crystal data

  • C17H24N2S

  • M r = 288.44

  • Triclinic, Inline graphic

  • a = 7.3514 (3) Å

  • b = 8.2978 (3) Å

  • c = 14.2168 (5) Å

  • α = 92.275 (2)°

  • β = 98.706 (2)°

  • γ = 103.810 (2)°

  • V = 829.86 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.26 × 0.17 × 0.16 mm

Data collection

  • Bruker APEXII CCD detector diffractometer

  • 29319 measured reflections

  • 6513 independent reflections

  • 3251 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.161

  • S = 1.00

  • 6513 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810011542/bt5230sup1.cif

e-66-0o992-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011542/bt5230Isup2.hkl

e-66-0o992-Isup2.hkl (318.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Quinoxaline derivatives are used as starting compounds in the synthesis of various more complex heterocyclic systems. On the other hand, quinoxaline core constitutes a structural fragment of many important pharmaceuticals and biologically active substances so that compounds containing a quinoxaline fragment attract strong interest of synthetic chemists and biochemists. Quinoxaline derivatives were found to exhibit antimicrobial (Kleim et al. 1995 ), antitumor (Abasolo et al., 1987), and antituberculous activity (Rodrigo et al., 2002).

Bond lengths and angles in title molecule (Fig.1) are normal.

Experimental

To a solution of 3-methylequinoxaline-2(1H)-thione (1 g, 5.68053 mmol) in dimethylformamide (20 ml), was added CH3(CH2)6C2I ,K2CO3 (1 g, 7.46 mmol) and a catalytic quantity of tetrabutylammoniumbromide. The mixture was stirred at room temperature for 24 h. The solution was filtered to remove the salts. The solvent was removed under reduced pressure.

The residue was crystallized in ethanol to afford the title compound as colourless crystals.

Refinement

All H atoms were geometrically positioned and treated as riding with Cmethyl—H = 0.96 Å, Cmethylene—H = 0.97 Å and Caromatic—H = 0.93 Å with U(H) = 1.2Ueq(C) or U(H) = 1.5Ueq(Cmethyl) .

Figures

Fig. 1.

Fig. 1.

: Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

C17H24N2S Z = 2
Mr = 288.44 F(000) = 312
Triclinic, P1 Dx = 1.154 Mg m3
Hall symbol: -P 1 Melting point: 374 K
a = 7.3514 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.2978 (3) Å Cell parameters from 2685 reflections
c = 14.2168 (5) Å θ = 2.5–27.3°
α = 92.275 (2)° µ = 0.19 mm1
β = 98.706 (2)° T = 296 K
γ = 103.810 (2)° Block, colourless
V = 829.86 (5) Å3 0.26 × 0.17 × 0.16 mm

Data collection

Bruker APEXII CCD detector diffractometer 3251 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.046
graphite θmax = 33.6°, θmin = 2.8°
ω and φ scans h = −10→11
29319 measured reflections k = −12→12
6513 independent reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0769P)2 + 0.0189P] where P = (Fo2 + 2Fc2)/3
6513 reflections (Δ/σ)max < 0.001
183 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Experimental. The data collection nominally covered a sphere of reciprocal space, by a combination of seven sets of exposures; each set had a different φ angle for the crystal and each exposure covered 0.5° in ω and 25 seconds in time. The crystal-to-detector distance was 37.5 mm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.61857 (5) 0.28251 (5) 0.04284 (3) 0.05291 (14)
N2 0.67349 (16) 0.13786 (14) −0.11823 (8) 0.0467 (3)
C8 0.54850 (18) 0.17628 (16) −0.07085 (10) 0.0426 (3)
N1 0.28116 (16) 0.05407 (15) −0.19181 (9) 0.0518 (3)
C10 0.87038 (19) 0.29990 (18) 0.06244 (11) 0.0493 (3)
H10A 0.8933 0.1896 0.0597 0.059*
H10B 0.9263 0.3596 0.0124 0.059*
C7 0.34717 (18) 0.13428 (17) −0.10860 (11) 0.0472 (3)
C1 0.6056 (2) 0.05508 (17) −0.20663 (10) 0.0476 (3)
C11 0.9631 (2) 0.39073 (19) 0.15840 (11) 0.0552 (4)
H11A 0.9086 0.3298 0.2085 0.066*
H11B 0.9379 0.5002 0.1615 0.066*
C6 0.4093 (2) 0.01226 (17) −0.24318 (10) 0.0503 (3)
C12 1.1760 (2) 0.40888 (19) 0.17481 (11) 0.0550 (4)
H12A 1.1990 0.2989 0.1689 0.066*
H12B 1.2287 0.4711 0.1247 0.066*
C14 1.4944 (2) 0.5180 (2) 0.27832 (11) 0.0593 (4)
H14A 1.5201 0.4097 0.2689 0.071*
H14B 1.5369 0.5831 0.2270 0.071*
C13 1.2816 (2) 0.4944 (2) 0.27024 (11) 0.0571 (4)
H13A 1.2372 0.4285 0.3209 0.069*
H13B 1.2539 0.6022 0.2786 0.069*
C5 0.3444 (3) −0.0724 (2) −0.33399 (12) 0.0654 (4)
H5 0.2151 −0.1026 −0.3580 0.078*
C15 1.6108 (2) 0.6024 (2) 0.37177 (12) 0.0659 (4)
H15A 1.5757 0.5341 0.4231 0.079*
H15B 1.5811 0.7085 0.3835 0.079*
C9 0.2124 (2) 0.1842 (2) −0.05151 (13) 0.0626 (4)
H9A 0.0860 0.1513 −0.0872 0.094*
H9B 0.2480 0.3028 −0.0377 0.094*
H9C 0.2166 0.1308 0.0072 0.094*
C2 0.7318 (3) 0.0135 (2) −0.26280 (12) 0.0630 (4)
H2 0.8616 0.0409 −0.2397 0.076*
C16 1.8230 (3) 0.6316 (3) 0.37289 (14) 0.0818 (6)
H16A 1.8523 0.5247 0.3632 0.098*
H16B 1.8562 0.6956 0.3196 0.098*
C3 0.6642 (3) −0.0667 (2) −0.35107 (13) 0.0737 (5)
H3 0.7489 −0.0927 −0.3880 0.088*
C4 0.4702 (3) −0.1106 (2) −0.38715 (13) 0.0748 (5)
H4 0.4266 −0.1660 −0.4475 0.090*
C17 1.9438 (3) 0.7205 (3) 0.46263 (17) 0.1066 (8)
H17A 1.9224 0.8295 0.4708 0.160*
H17B 2.0752 0.7303 0.4587 0.160*
H17C 1.9114 0.6589 0.5160 0.160*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0394 (2) 0.0656 (2) 0.0517 (2) 0.01121 (16) 0.00697 (15) −0.00649 (16)
N2 0.0370 (6) 0.0531 (6) 0.0480 (7) 0.0077 (5) 0.0075 (5) 0.0010 (5)
C8 0.0345 (7) 0.0467 (7) 0.0450 (7) 0.0078 (5) 0.0052 (5) 0.0039 (6)
N1 0.0393 (6) 0.0597 (7) 0.0529 (7) 0.0106 (5) −0.0004 (5) 0.0030 (6)
C10 0.0370 (7) 0.0551 (8) 0.0511 (8) 0.0046 (6) 0.0052 (6) −0.0026 (6)
C7 0.0346 (7) 0.0498 (7) 0.0555 (9) 0.0087 (6) 0.0049 (6) 0.0064 (6)
C1 0.0454 (8) 0.0501 (7) 0.0467 (8) 0.0093 (6) 0.0090 (6) 0.0041 (6)
C11 0.0465 (8) 0.0620 (9) 0.0523 (9) 0.0077 (7) 0.0041 (7) −0.0011 (7)
C6 0.0489 (8) 0.0518 (8) 0.0468 (8) 0.0095 (6) 0.0018 (6) 0.0059 (6)
C12 0.0475 (8) 0.0601 (8) 0.0507 (8) 0.0058 (7) 0.0004 (7) 0.0006 (7)
C14 0.0528 (9) 0.0644 (9) 0.0518 (9) 0.0041 (7) −0.0018 (7) 0.0044 (7)
C13 0.0518 (9) 0.0618 (9) 0.0514 (9) 0.0071 (7) 0.0009 (7) 0.0010 (7)
C5 0.0667 (11) 0.0707 (10) 0.0515 (9) 0.0130 (8) −0.0048 (8) −0.0018 (8)
C15 0.0579 (10) 0.0745 (10) 0.0554 (9) 0.0070 (8) −0.0045 (8) −0.0010 (8)
C9 0.0383 (8) 0.0779 (10) 0.0721 (11) 0.0181 (7) 0.0082 (7) −0.0061 (8)
C2 0.0597 (10) 0.0699 (10) 0.0616 (10) 0.0151 (8) 0.0203 (8) −0.0006 (8)
C16 0.0637 (12) 0.1066 (15) 0.0644 (11) 0.0139 (10) −0.0064 (9) −0.0109 (10)
C3 0.0848 (14) 0.0779 (11) 0.0645 (11) 0.0220 (10) 0.0298 (10) −0.0013 (9)
C4 0.0960 (15) 0.0749 (11) 0.0481 (10) 0.0159 (10) 0.0067 (10) −0.0051 (8)
C17 0.0735 (14) 0.138 (2) 0.0857 (16) 0.0068 (13) −0.0159 (12) −0.0248 (14)

Geometric parameters (Å, °)

S1—C8 1.7530 (14) C14—H14B 0.9700
S1—C10 1.7995 (14) C13—H13A 0.9700
N2—C8 1.3077 (18) C13—H13B 0.9700
N2—C1 1.3705 (18) C5—C4 1.363 (3)
C8—C7 1.4485 (18) C5—H5 0.9300
N1—C7 1.2990 (18) C15—C16 1.518 (2)
N1—C6 1.373 (2) C15—H15A 0.9700
C10—C11 1.5119 (19) C15—H15B 0.9700
C10—H10A 0.9700 C9—H9A 0.9600
C10—H10B 0.9700 C9—H9B 0.9600
C7—C9 1.491 (2) C9—H9C 0.9600
C1—C2 1.405 (2) C2—C3 1.361 (2)
C1—C6 1.411 (2) C2—H2 0.9300
C11—C12 1.517 (2) C16—C17 1.493 (2)
C11—H11A 0.9700 C16—H16A 0.9700
C11—H11B 0.9700 C16—H16B 0.9700
C6—C5 1.403 (2) C3—C4 1.395 (3)
C12—C13 1.513 (2) C3—H3 0.9300
C12—H12A 0.9700 C4—H4 0.9300
C12—H12B 0.9700 C17—H17A 0.9600
C14—C15 1.511 (2) C17—H17B 0.9600
C14—C13 1.515 (2) C17—H17C 0.9600
C14—H14A 0.9700
C8—S1—C10 101.52 (7) C14—C13—H13A 109.2
C8—N2—C1 116.84 (12) C12—C13—H13B 109.2
N2—C8—C7 122.43 (13) C14—C13—H13B 109.2
N2—C8—S1 120.95 (10) H13A—C13—H13B 107.9
C7—C8—S1 116.62 (10) C4—C5—C6 120.31 (17)
C7—N1—C6 117.62 (12) C4—C5—H5 119.8
C11—C10—S1 110.83 (10) C6—C5—H5 119.8
C11—C10—H10A 109.5 C14—C15—C16 112.72 (16)
S1—C10—H10A 109.5 C14—C15—H15A 109.0
C11—C10—H10B 109.5 C16—C15—H15A 109.0
S1—C10—H10B 109.5 C14—C15—H15B 109.0
H10A—C10—H10B 108.1 C16—C15—H15B 109.0
N1—C7—C8 121.19 (13) H15A—C15—H15B 107.8
N1—C7—C9 119.08 (12) C7—C9—H9A 109.5
C8—C7—C9 119.73 (13) C7—C9—H9B 109.5
N2—C1—C2 120.09 (13) H9A—C9—H9B 109.5
N2—C1—C6 120.89 (13) C7—C9—H9C 109.5
C2—C1—C6 119.02 (14) H9A—C9—H9C 109.5
C10—C11—C12 111.23 (13) H9B—C9—H9C 109.5
C10—C11—H11A 109.4 C3—C2—C1 119.96 (16)
C12—C11—H11A 109.4 C3—C2—H2 120.0
C10—C11—H11B 109.4 C1—C2—H2 120.0
C12—C11—H11B 109.4 C17—C16—C15 114.54 (18)
H11A—C11—H11B 108.0 C17—C16—H16A 108.6
N1—C6—C5 119.52 (14) C15—C16—H16A 108.6
N1—C6—C1 121.03 (13) C17—C16—H16B 108.6
C5—C6—C1 119.45 (14) C15—C16—H16B 108.6
C13—C12—C11 115.33 (13) H16A—C16—H16B 107.6
C13—C12—H12A 108.4 C2—C3—C4 121.23 (17)
C11—C12—H12A 108.4 C2—C3—H3 119.4
C13—C12—H12B 108.4 C4—C3—H3 119.4
C11—C12—H12B 108.4 C5—C4—C3 120.02 (17)
H12A—C12—H12B 107.5 C5—C4—H4 120.0
C15—C14—C13 115.44 (14) C3—C4—H4 120.0
C15—C14—H14A 108.4 C16—C17—H17A 109.5
C13—C14—H14A 108.4 C16—C17—H17B 109.5
C15—C14—H14B 108.4 H17A—C17—H17B 109.5
C13—C14—H14B 108.4 C16—C17—H17C 109.5
H14A—C14—H14B 107.5 H17A—C17—H17C 109.5
C12—C13—C14 112.02 (13) H17B—C17—H17C 109.5
C12—C13—H13A 109.2

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5230).

References

  1. Abasolo, M. I., Gaozza, C. H. & Fernandez, B. M. (1987). J. Heterocycl. Chem.24, 1771–1775.
  2. Bruker (2005). APEX2 andSAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Jampilek, J., Dolezal, M., Kunes, J., Buchta, V. & Kralova, K. (2005). Med. Chem.1, 591–599. [DOI] [PubMed]
  4. Kleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rosner, M., Rubsamen Waigmann, H., Kaiser, R., Wichers, M., Schneweis, K. E., Winkler, I. & Riess, G. (1995). Antimicrob. Agents Chemother.39, 2253–2257. [DOI] [PMC free article] [PubMed]
  5. Rodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem.8, 137–143.
  6. Sashidhara, K. V., Kumar, A., Bhatia, G., Khan, M. M., Khanna, A. K. & Saxena, J. K. (2009). Eur. J. Med. Chem.44, 1813–1818. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Watkins, A. J., Nicol, G. W. & Shawa, L. J. (2009). Soil Biol. Biochem.41, 580–585.
  9. Westrip, S. P. (2010). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810011542/bt5230sup1.cif

e-66-0o992-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011542/bt5230Isup2.hkl

e-66-0o992-Isup2.hkl (318.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES