Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 6;66(Pt 4):m366–m367. doi: 10.1107/S1600536810007622

{6,6′-Dieth­oxy-2,2′-[2,2-dimethyl­propane-1,3-diylbis(nitrilo­methyl­idyne)]diphenolato}(2-eth­oxy-6-formyl­phenolato)cobalt(III)–ethanol–water (1/1/1)

Reza Kia a,, Hadi Kargar b, Karim Zare a, Islam Ullah Khan c,*
PMCID: PMC2983841  PMID: 21580480

Abstract

The asymmetric unit of the title compound, [Co(C23H28N2O4)(C9H9O3)]·C2H5OH·H2O, comprises one complex mol­ecule, a water mol­ecule of crystallization and an ethanol mol­ecule of crystallization, which is disordered over two positions with a ratio of refined site occupancies of 0.567 (10):0.433 (10). The CoIII ion is in a slightly distorted octa­hedral geometry involving an N2O2 atom set of the tetra­denate Schiff base ligand and two O atoms of 2-eth­oxy-6-formyl­phenolate. The H atoms of the water mol­ecule act as donors in the formation of bifurcated inter­molecular O—H⋯(O,O) hydrogen bonds with the O atoms of the hydr­oxy and eth­oxy groups with R 1 2(5) ring motifs, which may influence the mol­ecular conformation. The crystal structure is further stabilized by inter­molecular O—H⋯O and C—H⋯O inter­actions.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For background to Schiff base–metal complexes, see: Granovski et al. (1993); Blower et al. (1998); Elmali et al. (2000).graphic file with name e-66-0m366-scheme1.jpg

Experimental

Crystal data

  • [Co(C23H28N2O4)(C9H9O3)]·C2H6O·H2O

  • M r = 684.65

  • Monoclinic, Inline graphic

  • a = 13.2827 (17) Å

  • b = 14.0158 (17) Å

  • c = 19.602 (2) Å

  • β = 106.491 (7)°

  • V = 3499.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 298 K

  • 0.42 × 0.21 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.804, T max = 0.923

  • 69893 measured reflections

  • 6159 independent reflections

  • 3652 reflections with I > 2σ(I)

  • R int = 0.115

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.138

  • S = 1.05

  • 6159 reflections

  • 424 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810007622/jh2132sup1.cif

e-66-0m366-sup1.cif (32.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007622/jh2132Isup2.hkl

e-66-0m366-Isup2.hkl (301.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1 0.85 2.51 3.182 (5) 137
O1W—H1WA⋯O4 0.85 2.15 2.936 (5) 154
O1W—H1WB⋯O2 0.85 2.21 2.883 (5) 136
O1W—H1WB⋯O5 0.85 2.18 2.952 (5) 151
O7A—H7A⋯O1W 0.82 2.10 2.899 (19) 164
C8—H8C⋯O3 0.97 2.31 2.829 (5) 113

Acknowledgments

HK and RK thank PNU for the financial support. RK and KZ also thank the Science and Research Branch, Islamic Azad University. IUK thanks GC University of Lahore, for the research facilities.

supplementary crystallographic information

Comment

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of the Schiff bases have been studied extensively, and they play a major role in both synthetic and structurel research (Elmali et al., 2000; Blower et al., 1998). The structure of the title compound was determined to clarify the identity of the synthesis product.

The asymmetric unit of the title compound, Fig. 1, [Co(C32H37N2O7)]. C2H6O. H2O, comprises a unit of the complex, a water molecule of crystallization and an ethanol of crystallization. The H atoms of the water molecule act as donors in the formation of bifurcated O—H···(O,O) intermolecular hydrogen bonds with the O atoms of the hydroxy and ethoxy groups with R21(5) ring motifs (Bernstein et al., 1995) which may influence the molecular conformation. The crystal structure is further stabilized by the intermolecular C—H···O and O—H···O interactions (Table 1).

Experimental

The title compound was synthesized by adding 6,6'-Diethoxy-2,2'- [2,3-dimethyl-propylenebis(nitrilomethylidyne)]-diphenol (2 mmol) to a solution of CoCl2. 6 H2O (2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant red solution was filtered. Brown single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement

The H atoms of the water molecule were located in a difference Fourier map and constrained to refine with the parent atom with Uiso(H) = 1.5 Ueq(O). The H atoms of the ethanol molecules were positioned geometrically and constrained to refine with the parent atoms with Uiso(H) = 1.5 Ueq(O). The rest of the H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). Distant restraints were applied to the ethanol molecules.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. All H atoms except those of water and ethanol molecules were omitted for clarity. Intramolecular hydrogen bonds are drawn as dashed lines.

Crystal data

[Co(C23H28N2O4)(C9H9O3)]·C2H6O·H2O F(000) = 1448
Mr = 684.65 Dx = 1.300 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6054 reflections
a = 13.2827 (17) Å θ = 2.6–18.8°
b = 14.0158 (17) Å µ = 0.54 mm1
c = 19.602 (2) Å T = 298 K
β = 106.491 (7)° Block, brown
V = 3499.1 (8) Å3 0.42 × 0.21 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 6159 independent reflections
Radiation source: fine-focus sealed tube 3652 reflections with I > 2σ(I)
graphite Rint = 0.115
φ and ω scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −15→15
Tmin = 0.804, Tmax = 0.923 k = −16→16
69893 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0534P)2 + 2.3725P] where P = (Fo2 + 2Fc2)/3
6159 reflections (Δ/σ)max = 0.001
424 parameters Δρmax = 0.35 e Å3
6 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Co1 0.08603 (4) 0.66689 (3) 0.10882 (3) 0.03716 (18)
O1 0.16611 (19) 0.55376 (17) 0.11696 (13) 0.0400 (6)
O2 0.1630 (2) 0.71434 (17) 0.04880 (13) 0.0420 (7)
O3 0.0100 (2) 0.78205 (17) 0.09545 (13) 0.0440 (7)
O4 0.3340 (2) 0.4494 (2) 0.13168 (16) 0.0633 (8)
O5 0.2931 (2) 0.7862 (2) −0.01411 (17) 0.0634 (9)
O6 −0.1080 (2) 0.92553 (19) 0.04635 (16) 0.0558 (8)
N1 0.0146 (3) 0.6214 (2) 0.17440 (16) 0.0411 (8)
N2 −0.0255 (2) 0.6182 (2) 0.03404 (16) 0.0360 (7)
O7 0.1986 (2) 0.71601 (19) 0.18559 (13) 0.0471 (7)
C1 0.1982 (3) 0.5046 (3) 0.1762 (2) 0.0401 (9)
C17 0.1290 (3) 0.7202 (2) −0.0207 (2) 0.0390 (10)
C30 0.0521 (3) 0.8646 (3) 0.1149 (2) 0.0409 (10)
C10 −0.1038 (3) 0.5570 (3) 0.0523 (2) 0.0441 (10)
H10A −0.0682 0.5028 0.0794 0.053*
H10B −0.1517 0.5328 0.0087 0.053*
C12 0.0297 (3) 0.6901 (2) −0.0623 (2) 0.0400 (10)
C6 0.1477 (3) 0.5041 (3) 0.2303 (2) 0.0463 (10)
C11 −0.0402 (3) 0.6393 (2) −0.0321 (2) 0.0399 (10)
H11 −0.1032 0.6192 −0.0634 0.048*
C32 −0.1803 (4) 1.0022 (3) 0.0196 (3) 0.0634 (13)
H32A −0.1557 1.0412 −0.0132 0.076*
H32B −0.1870 1.0422 0.0585 0.076*
C16 0.1978 (4) 0.7582 (3) −0.0578 (2) 0.0477 (11)
C25 −0.0104 (4) 0.9476 (3) 0.0882 (2) 0.0450 (10)
C8 −0.0929 (3) 0.6532 (3) 0.1644 (2) 0.0487 (11)
H8C −0.0960 0.7222 0.1607 0.058*
H8B −0.1159 0.6348 0.2053 0.058*
C7 0.0531 (3) 0.5571 (3) 0.2221 (2) 0.0492 (11)
H7 0.0154 0.5441 0.2544 0.059*
C29 0.1529 (3) 0.8801 (3) 0.1619 (2) 0.0471 (10)
C2 0.2861 (3) 0.4432 (3) 0.1853 (2) 0.0527 (11)
C13 0.0010 (4) 0.6986 (3) −0.1375 (2) 0.0547 (12)
H13 −0.0654 0.6791 −0.1642 0.066*
C28 0.1908 (4) 0.9753 (3) 0.1800 (2) 0.0575 (12)
H28 0.2571 0.9853 0.2114 0.069*
C14 0.0689 (4) 0.7348 (3) −0.1707 (2) 0.0604 (13)
H14 0.0494 0.7397 −0.2201 0.073*
C9 −0.1676 (3) 0.6083 (3) 0.0956 (2) 0.0484 (11)
C31 0.2158 (3) 0.8032 (3) 0.1952 (2) 0.0521 (11)
H31 0.2784 0.8194 0.2288 0.063*
C5 0.1836 (4) 0.4445 (4) 0.2893 (2) 0.0670 (14)
H5 0.1493 0.4444 0.3246 0.080*
C3 0.3193 (4) 0.3866 (3) 0.2438 (3) 0.0720 (14)
H3A 0.3773 0.3473 0.2489 0.086*
C27 0.1302 (4) 1.0495 (3) 0.1514 (3) 0.0645 (14)
H27 0.1558 1.1110 0.1623 0.077*
C15 0.1682 (4) 0.7648 (3) −0.1310 (2) 0.0622 (13)
H15 0.2148 0.7895 −0.1540 0.075*
C22 −0.2350 (4) 0.5316 (4) 0.1163 (3) 0.0779 (16)
H22D −0.2805 0.5035 0.0741 0.117*
H22E −0.2764 0.5598 0.1439 0.117*
H22C −0.1904 0.4833 0.1440 0.117*
C4 0.2673 (5) 0.3872 (4) 0.2957 (3) 0.0826 (17)
H4 0.2902 0.3478 0.3353 0.099*
C26 0.0291 (4) 1.0369 (3) 0.1054 (2) 0.0570 (12)
H26 −0.0113 1.0899 0.0864 0.068*
C23 −0.2355 (4) 0.6871 (4) 0.0513 (3) 0.0736 (15)
H23A −0.2814 0.6600 0.0088 0.110*
H23B −0.1911 0.7339 0.0388 0.110*
H23C −0.2765 0.7169 0.0786 0.110*
C18 0.4309 (4) 0.3987 (4) 0.1404 (3) 0.0895 (17)
H18A 0.4171 0.3309 0.1336 0.107*
H18B 0.4767 0.4085 0.1881 0.107*
C33 −0.2833 (4) 0.9583 (4) −0.0174 (3) 0.0921 (18)
H33E −0.3325 1.0074 −0.0388 0.138*
H33D −0.3091 0.9234 0.0163 0.138*
H33C −0.2747 0.9156 −0.0537 0.138*
C19 0.4820 (5) 0.4348 (5) 0.0872 (4) 0.1229 (17)
H19D 0.5439 0.3980 0.0899 0.184*
H19E 0.5010 0.5006 0.0970 0.184*
H19C 0.4342 0.4293 0.0404 0.184*
C20 0.3736 (4) 0.8077 (4) −0.0458 (3) 0.099 (2)
H20C 0.3576 0.8665 −0.0730 0.119*
H20B 0.3805 0.7568 −0.0777 0.119*
C21 0.4742 (5) 0.8185 (5) 0.0139 (4) 0.1229 (17)
H21D 0.5327 0.8221 −0.0056 0.184*
H21B 0.4828 0.7644 0.0451 0.184*
H21E 0.4710 0.8757 0.0401 0.184*
O1W 0.3766 (3) 0.6483 (3) 0.1020 (2) 0.1109 (15)
H1WA 0.3438 0.5975 0.1061 0.166*
H1WB 0.3331 0.6857 0.0744 0.166*
O7B 0.500 (3) 0.7112 (17) 0.2156 (14) 0.187 (8) 0.433 (10)
H7B 0.5110 0.7029 0.1769 0.281* 0.433 (10)
C34B 0.483 (2) 0.614 (2) 0.3126 (16) 0.226 (9) 0.433 (10)
H34H 0.5100 0.6487 0.3561 0.338* 0.433 (10)
H34G 0.4872 0.5466 0.3226 0.338* 0.433 (10)
H34C 0.4105 0.6310 0.2916 0.338* 0.433 (10)
C35B 0.5463 (16) 0.6375 (16) 0.2612 (12) 0.138 (5) 0.433 (10)
H35E 0.6168 0.6560 0.2880 0.166* 0.433 (10)
H35B 0.5515 0.5813 0.2335 0.166* 0.433 (10)
O7A 0.4612 (19) 0.7350 (11) 0.2408 (10) 0.187 (8) 0.567 (10)
H7A 0.4379 0.7212 0.1986 0.281* 0.567 (10)
C34A 0.5407 (18) 0.5896 (16) 0.2956 (15) 0.226 (9) 0.567 (10)
H34B 0.5435 0.5513 0.3367 0.338* 0.567 (10)
H34D 0.6049 0.6249 0.3035 0.338* 0.567 (10)
H34A 0.5317 0.5491 0.2549 0.338* 0.567 (10)
C35A 0.4496 (10) 0.6580 (10) 0.2828 (9) 0.138 (5) 0.567 (10)
H35A 0.3852 0.6245 0.2596 0.166* 0.567 (10)
H35C 0.4440 0.6815 0.3282 0.166* 0.567 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0447 (3) 0.0301 (3) 0.0365 (3) −0.0004 (3) 0.0113 (2) −0.0034 (2)
O1 0.0476 (17) 0.0347 (14) 0.0375 (15) 0.0035 (12) 0.0118 (13) −0.0009 (12)
O2 0.0439 (17) 0.0405 (15) 0.0408 (16) −0.0030 (13) 0.0109 (13) 0.0034 (12)
O3 0.0494 (18) 0.0260 (14) 0.0538 (17) −0.0013 (12) 0.0101 (14) −0.0069 (12)
O4 0.056 (2) 0.066 (2) 0.071 (2) 0.0214 (16) 0.0230 (18) 0.0092 (17)
O5 0.054 (2) 0.067 (2) 0.077 (2) −0.0061 (17) 0.0308 (19) 0.0121 (17)
O6 0.059 (2) 0.0381 (16) 0.070 (2) 0.0076 (15) 0.0171 (17) 0.0010 (14)
N1 0.046 (2) 0.0384 (18) 0.0389 (19) 0.0002 (16) 0.0124 (16) −0.0070 (16)
N2 0.044 (2) 0.0275 (16) 0.0386 (19) 0.0012 (15) 0.0144 (16) −0.0034 (14)
O7 0.0524 (18) 0.0415 (17) 0.0427 (16) −0.0020 (14) 0.0058 (14) −0.0032 (13)
C1 0.045 (3) 0.035 (2) 0.037 (2) −0.0011 (19) 0.006 (2) 0.0004 (18)
C17 0.055 (3) 0.025 (2) 0.040 (2) 0.0093 (18) 0.017 (2) 0.0008 (17)
C30 0.051 (3) 0.034 (2) 0.044 (2) −0.0012 (19) 0.024 (2) −0.0052 (18)
C10 0.049 (3) 0.037 (2) 0.045 (2) −0.0064 (19) 0.011 (2) −0.0042 (19)
C12 0.058 (3) 0.024 (2) 0.038 (2) 0.0021 (18) 0.014 (2) 0.0007 (16)
C6 0.054 (3) 0.044 (2) 0.041 (2) 0.005 (2) 0.015 (2) 0.005 (2)
C11 0.047 (3) 0.028 (2) 0.039 (2) 0.0034 (18) 0.003 (2) −0.0072 (17)
C32 0.077 (4) 0.047 (3) 0.074 (3) 0.021 (3) 0.034 (3) 0.015 (2)
C16 0.054 (3) 0.036 (2) 0.057 (3) 0.005 (2) 0.022 (2) 0.004 (2)
C25 0.056 (3) 0.035 (2) 0.051 (3) 0.002 (2) 0.027 (2) −0.0046 (19)
C8 0.048 (3) 0.052 (3) 0.051 (2) 0.001 (2) 0.022 (2) −0.006 (2)
C7 0.061 (3) 0.053 (3) 0.038 (2) −0.008 (2) 0.021 (2) −0.005 (2)
C29 0.061 (3) 0.042 (2) 0.041 (2) −0.005 (2) 0.019 (2) −0.007 (2)
C2 0.053 (3) 0.047 (3) 0.058 (3) 0.002 (2) 0.013 (2) 0.006 (2)
C13 0.080 (3) 0.038 (2) 0.044 (3) 0.005 (2) 0.014 (2) 0.002 (2)
C28 0.065 (3) 0.043 (3) 0.068 (3) −0.018 (2) 0.026 (3) −0.014 (2)
C14 0.090 (4) 0.048 (3) 0.044 (3) 0.006 (3) 0.020 (3) 0.005 (2)
C9 0.040 (3) 0.048 (3) 0.059 (3) −0.002 (2) 0.017 (2) −0.007 (2)
C31 0.055 (3) 0.055 (3) 0.042 (2) −0.012 (2) 0.007 (2) −0.010 (2)
C5 0.076 (4) 0.076 (3) 0.050 (3) 0.006 (3) 0.019 (3) 0.020 (3)
C3 0.072 (4) 0.066 (3) 0.074 (3) 0.022 (3) 0.013 (3) 0.024 (3)
C27 0.087 (4) 0.037 (3) 0.075 (3) −0.018 (3) 0.033 (3) −0.020 (2)
C15 0.089 (4) 0.052 (3) 0.057 (3) 0.008 (3) 0.039 (3) 0.013 (2)
C22 0.067 (4) 0.089 (4) 0.089 (4) −0.028 (3) 0.042 (3) −0.018 (3)
C4 0.089 (4) 0.086 (4) 0.067 (4) 0.020 (3) 0.013 (3) 0.044 (3)
C26 0.075 (4) 0.031 (2) 0.075 (3) −0.002 (2) 0.037 (3) −0.003 (2)
C23 0.064 (3) 0.078 (4) 0.071 (3) 0.014 (3) 0.007 (3) −0.014 (3)
C18 0.073 (4) 0.087 (4) 0.111 (5) 0.029 (3) 0.030 (4) 0.005 (4)
C33 0.064 (4) 0.086 (4) 0.112 (5) 0.017 (3) 0.001 (3) 0.011 (4)
C19 0.069 (3) 0.137 (4) 0.172 (5) −0.002 (3) 0.050 (3) −0.001 (4)
C20 0.079 (4) 0.098 (5) 0.134 (5) 0.000 (4) 0.055 (4) 0.016 (4)
C21 0.069 (3) 0.137 (4) 0.172 (5) −0.002 (3) 0.050 (3) −0.001 (4)
O1W 0.074 (3) 0.105 (3) 0.148 (4) 0.000 (2) 0.022 (3) 0.045 (3)
O7B 0.201 (19) 0.138 (10) 0.179 (14) −0.046 (8) −0.017 (10) −0.026 (10)
C34B 0.20 (3) 0.23 (2) 0.21 (2) 0.105 (17) −0.010 (18) −0.023 (16)
C35B 0.119 (10) 0.118 (11) 0.142 (12) 0.006 (9) −0.021 (9) −0.004 (8)
O7A 0.201 (19) 0.138 (10) 0.179 (14) −0.046 (8) −0.017 (10) −0.026 (10)
C34A 0.20 (3) 0.23 (2) 0.21 (2) 0.105 (17) −0.010 (18) −0.023 (16)
C35A 0.119 (10) 0.118 (11) 0.142 (12) 0.006 (9) −0.021 (9) −0.004 (8)

Geometric parameters (Å, °)

Co1—O3 1.882 (2) C9—C22 1.525 (6)
Co1—O2 1.885 (3) C9—C23 1.531 (6)
Co1—O1 1.891 (2) C31—H31 0.9300
Co1—N2 1.891 (3) C5—C4 1.348 (6)
Co1—N1 1.910 (3) C5—H5 0.9300
Co1—O7 1.923 (3) C3—C4 1.382 (7)
O1—C1 1.313 (4) C3—H3A 0.9300
O2—C17 1.311 (4) C27—C26 1.400 (6)
O3—C30 1.294 (4) C27—H27 0.9300
O4—C2 1.378 (5) C15—H15 0.9300
O4—C18 1.436 (5) C22—H22D 0.9600
O5—C16 1.369 (5) C22—H22E 0.9600
O5—C20 1.414 (6) C22—H22C 0.9600
O6—C25 1.358 (5) C4—H4 0.9300
O6—C32 1.437 (5) C26—H26 0.9300
N1—C7 1.295 (5) C23—H23A 0.9600
N1—C8 1.456 (5) C23—H23B 0.9600
N2—C11 1.288 (4) C23—H23C 0.9600
N2—C10 1.468 (5) C18—C19 1.486 (8)
O7—C31 1.247 (5) C18—H18A 0.9700
C1—C6 1.405 (5) C18—H18B 0.9700
C1—C2 1.421 (5) C33—H33E 0.9600
C17—C12 1.404 (5) C33—H33D 0.9600
C17—C16 1.423 (5) C33—H33C 0.9600
C30—C29 1.410 (6) C19—H19D 0.9600
C30—C25 1.440 (5) C19—H19E 0.9600
C10—C9 1.538 (5) C19—H19C 0.9600
C10—H10A 0.9700 C20—C21 1.514 (8)
C10—H10B 0.9700 C20—H20C 0.9700
C12—C13 1.418 (5) C20—H20B 0.9700
C12—C11 1.427 (5) C21—H21D 0.9600
C6—C5 1.397 (6) C21—H21B 0.9600
C6—C7 1.429 (6) C21—H21E 0.9600
C11—H11 0.9300 O1W—H1WA 0.8508
C32—C33 1.487 (6) O1W—H1WB 0.8508
C32—H32A 0.9700 O7B—C35B 1.390 (10)
C32—H32B 0.9700 O7B—H7B 0.8202
C16—C15 1.379 (6) O7B—H7A 0.8084
C25—C26 1.361 (5) C34B—C35B 1.526 (10)
C8—C9 1.561 (5) C34B—H34H 0.9600
C8—H8C 0.9700 C34B—H34G 0.9600
C8—H8B 0.9700 C34B—H34C 0.9600
C7—H7 0.9300 C35B—H35E 0.9700
C29—C31 1.407 (6) C35B—H35B 0.9700
C29—C28 1.434 (5) O7A—C35A 1.392 (9)
C2—C3 1.360 (6) O7A—H7A 0.8200
C13—C14 1.353 (6) C34A—C35A 1.508 (9)
C13—H13 0.9300 C34A—H34B 0.9600
C28—C27 1.338 (6) C34A—H34D 0.9600
C28—H28 0.9300 C34A—H34A 0.9600
C14—C15 1.392 (6) C35A—H35A 0.9700
C14—H14 0.9300 C35A—H35C 0.9700
O3—Co1—O2 88.56 (11) C23—C9—C10 110.6 (3)
O3—Co1—O1 175.99 (11) C22—C9—C8 109.4 (4)
O2—Co1—O1 87.52 (11) C23—C9—C8 109.1 (3)
O3—Co1—N2 86.00 (12) C10—C9—C8 110.5 (3)
O2—Co1—N2 95.04 (12) O7—C31—C29 128.4 (4)
O1—Co1—N2 93.50 (11) O7—C31—H31 115.8
O3—Co1—N1 91.77 (13) C29—C31—H31 115.8
O2—Co1—N1 176.57 (12) C4—C5—C6 120.8 (5)
O1—Co1—N1 92.20 (12) C4—C5—H5 119.6
N2—Co1—N1 88.39 (13) C6—C5—H5 119.6
O3—Co1—O7 93.96 (11) C2—C3—C4 120.5 (5)
O2—Co1—O7 85.60 (11) C2—C3—H3A 119.8
O1—Co1—O7 86.58 (11) C4—C3—H3A 119.8
N2—Co1—O7 179.36 (13) C28—C27—C26 121.7 (4)
N1—Co1—O7 90.97 (12) C28—C27—H27 119.2
C1—O1—Co1 123.2 (2) C26—C27—H27 119.2
C17—O2—Co1 125.7 (2) C16—C15—C14 120.4 (4)
C30—O3—Co1 123.8 (2) C16—C15—H15 119.8
C2—O4—C18 118.0 (4) C14—C15—H15 119.8
C16—O5—C20 117.8 (4) C9—C22—H22D 109.5
C25—O6—C32 118.3 (3) C9—C22—H22E 109.5
C7—N1—C8 118.8 (4) H22D—C22—H22E 109.5
C7—N1—Co1 123.3 (3) C9—C22—H22C 109.5
C8—N1—Co1 117.6 (3) H22D—C22—H22C 109.5
C11—N2—C10 117.6 (3) H22E—C22—H22C 109.5
C11—N2—Co1 123.9 (3) C5—C4—C3 120.4 (4)
C10—N2—Co1 118.4 (2) C5—C4—H4 119.8
C31—O7—Co1 122.5 (3) C3—C4—H4 119.8
O1—C1—C6 124.4 (4) C25—C26—C27 120.5 (4)
O1—C1—C2 118.5 (4) C25—C26—H26 119.8
C6—C1—C2 116.9 (4) C27—C26—H26 119.8
O2—C17—C12 125.1 (4) C9—C23—H23A 109.5
O2—C17—C16 118.3 (4) C9—C23—H23B 109.5
C12—C17—C16 116.6 (4) H23A—C23—H23B 109.5
O3—C30—C29 125.5 (4) C9—C23—H23C 109.5
O3—C30—C25 117.4 (4) H23A—C23—H23C 109.5
C29—C30—C25 117.1 (4) H23B—C23—H23C 109.5
N2—C10—C9 113.7 (3) O4—C18—C19 108.7 (5)
N2—C10—H10A 108.8 O4—C18—H18A 110.0
C9—C10—H10A 108.8 C19—C18—H18A 110.0
N2—C10—H10B 108.8 O4—C18—H18B 110.0
C9—C10—H10B 108.8 C19—C18—H18B 110.0
H10A—C10—H10B 107.7 H18A—C18—H18B 108.3
C17—C12—C13 120.6 (4) C32—C33—H33E 109.5
C17—C12—C11 121.6 (3) C32—C33—H33D 109.5
C13—C12—C11 117.3 (4) H33E—C33—H33D 109.5
C5—C6—C1 120.3 (4) C32—C33—H33C 109.5
C5—C6—C7 119.0 (4) H33E—C33—H33C 109.5
C1—C6—C7 120.4 (4) H33D—C33—H33C 109.5
N2—C11—C12 127.0 (4) C18—C19—H19D 109.5
N2—C11—H11 116.5 C18—C19—H19E 109.5
C12—C11—H11 116.5 H19D—C19—H19E 109.5
O6—C32—C33 107.2 (4) C18—C19—H19C 109.5
O6—C32—H32A 110.3 H19D—C19—H19C 109.5
C33—C32—H32A 110.3 H19E—C19—H19C 109.5
O6—C32—H32B 110.3 O5—C20—C21 107.0 (5)
C33—C32—H32B 110.3 O5—C20—H20C 110.3
H32A—C32—H32B 108.5 C21—C20—H20C 110.3
O5—C16—C15 124.9 (4) O5—C20—H20B 110.3
O5—C16—C17 113.6 (4) C21—C20—H20B 110.3
C15—C16—C17 121.5 (4) H20C—C20—H20B 108.6
O6—C25—C26 126.4 (4) C20—C21—H21D 109.5
O6—C25—C30 112.8 (3) C20—C21—H21B 109.5
C26—C25—C30 120.7 (4) H21D—C21—H21B 109.5
N1—C8—C9 110.7 (3) C20—C21—H21E 109.5
N1—C8—H8C 109.5 H21D—C21—H21E 109.5
C9—C8—H8C 109.5 H21B—C21—H21E 109.5
N1—C8—H8B 109.5 H1WA—O1W—H1WB 107.5
C9—C8—H8B 109.5 C35B—O7B—H7B 109.1
H8C—C8—H8B 108.1 C35B—O7B—H7A 127.3
N1—C7—C6 126.6 (4) H7B—O7B—H7A 94.1
N1—C7—H7 116.7 C35B—C34B—H34H 109.5
C6—C7—H7 116.7 C35B—C34B—H34G 109.5
C31—C29—C30 120.9 (4) H34H—C34B—H34G 109.5
C31—C29—C28 118.5 (4) C35B—C34B—H34C 109.5
C30—C29—C28 120.5 (4) H34H—C34B—H34C 109.5
C3—C2—O4 124.8 (4) H34G—C34B—H34C 109.5
C3—C2—C1 121.1 (4) O7B—C35B—C34B 111.1 (10)
O4—C2—C1 114.0 (4) O7B—C35B—H35E 109.4
C14—C13—C12 120.8 (4) C34B—C35B—H35E 109.4
C14—C13—H13 119.6 O7B—C35B—H35B 109.4
C12—C13—H13 119.6 C34B—C35B—H35B 109.4
C27—C28—C29 119.5 (4) H35E—C35B—H35B 108.0
C27—C28—H28 120.3 C35A—O7A—H7A 109.9
C29—C28—H28 120.3 O7A—C35A—C34A 111.9 (10)
C13—C14—C15 119.9 (4) O7A—C35A—H35A 109.2
C13—C14—H14 120.0 C34A—C35A—H35A 109.2
C15—C14—H14 120.0 O7A—C35A—H35C 109.2
C22—C9—C23 111.4 (4) C34A—C35A—H35C 109.2
C22—C9—C10 105.9 (3) H35A—C35A—H35C 107.9
O2—Co1—O1—C1 142.6 (3) O2—C17—C16—O5 −1.2 (5)
N2—Co1—O1—C1 −122.5 (3) C12—C17—C16—O5 179.9 (3)
N1—Co1—O1—C1 −34.0 (3) O2—C17—C16—C15 178.8 (4)
O7—Co1—O1—C1 56.8 (3) C12—C17—C16—C15 −0.1 (5)
O3—Co1—O2—C17 −76.0 (3) C32—O6—C25—C26 −3.4 (6)
O1—Co1—O2—C17 103.2 (3) C32—O6—C25—C30 176.5 (3)
N2—Co1—O2—C17 9.9 (3) O3—C30—C25—O6 1.2 (5)
O7—Co1—O2—C17 −170.1 (3) C29—C30—C25—O6 −176.7 (3)
O2—Co1—O3—C30 −62.5 (3) O3—C30—C25—C26 −178.9 (4)
N2—Co1—O3—C30 −157.7 (3) C29—C30—C25—C26 3.2 (6)
N1—Co1—O3—C30 114.0 (3) C7—N1—C8—C9 −103.9 (4)
O7—Co1—O3—C30 22.9 (3) Co1—N1—C8—C9 69.2 (4)
O3—Co1—N1—C7 −156.5 (3) C8—N1—C7—C6 166.9 (4)
O1—Co1—N1—C7 24.1 (3) Co1—N1—C7—C6 −5.8 (6)
N2—Co1—N1—C7 117.5 (3) C5—C6—C7—N1 173.3 (4)
O7—Co1—N1—C7 −62.6 (3) C1—C6—C7—N1 −12.9 (6)
O3—Co1—N1—C8 30.7 (3) O3—C30—C29—C31 −3.1 (6)
O1—Co1—N1—C8 −148.7 (3) C25—C30—C29—C31 174.6 (4)
N2—Co1—N1—C8 −55.3 (3) O3—C30—C29—C28 −179.5 (4)
O7—Co1—N1—C8 124.7 (3) C25—C30—C29—C28 −1.8 (6)
O3—Co1—N2—C11 74.6 (3) C18—O4—C2—C3 −5.3 (7)
O2—Co1—N2—C11 −13.6 (3) C18—O4—C2—C1 172.6 (4)
O1—Co1—N2—C11 −101.4 (3) O1—C1—C2—C3 −176.3 (4)
N1—Co1—N2—C11 166.5 (3) C6—C1—C2—C3 0.1 (6)
O3—Co1—N2—C10 −101.8 (3) O1—C1—C2—O4 5.6 (5)
O2—Co1—N2—C10 170.0 (2) C6—C1—C2—O4 −178.0 (4)
O1—Co1—N2—C10 82.2 (3) C17—C12—C13—C14 0.8 (6)
N1—Co1—N2—C10 −9.9 (3) C11—C12—C13—C14 −171.5 (4)
O3—Co1—O7—C31 −20.5 (3) C31—C29—C28—C27 −177.0 (4)
O2—Co1—O7—C31 67.8 (3) C30—C29—C28—C27 −0.6 (6)
O1—Co1—O7—C31 155.5 (3) C12—C13—C14—C15 −0.4 (6)
N1—Co1—O7—C31 −112.3 (3) N2—C10—C9—C22 −173.8 (3)
Co1—O1—C1—C6 26.2 (5) N2—C10—C9—C23 65.4 (4)
Co1—O1—C1—C2 −157.7 (3) N2—C10—C9—C8 −55.5 (4)
Co1—O2—C17—C12 −1.3 (5) N1—C8—C9—C22 107.1 (4)
Co1—O2—C17—C16 179.9 (2) N1—C8—C9—C23 −130.9 (4)
Co1—O3—C30—C29 −15.0 (5) N1—C8—C9—C10 −9.2 (5)
Co1—O3—C30—C25 167.2 (2) Co1—O7—C31—C29 10.0 (6)
C11—N2—C10—C9 −112.7 (4) C30—C29—C31—O7 5.7 (7)
Co1—N2—C10—C9 64.0 (4) C28—C29—C31—O7 −177.9 (4)
O2—C17—C12—C13 −179.3 (3) C1—C6—C5—C4 0.5 (7)
C16—C17—C12—C13 −0.5 (5) C7—C6—C5—C4 174.2 (5)
O2—C17—C12—C11 −7.4 (6) O4—C2—C3—C4 178.3 (5)
C16—C17—C12—C11 171.4 (3) C1—C2—C3—C4 0.5 (7)
O1—C1—C6—C5 175.6 (4) C29—C28—C27—C26 1.6 (7)
C2—C1—C6—C5 −0.5 (6) O5—C16—C15—C14 −179.6 (4)
O1—C1—C6—C7 2.0 (6) C17—C16—C15—C14 0.5 (6)
C2—C1—C6—C7 −174.2 (4) C13—C14—C15—C16 −0.2 (7)
C10—N2—C11—C12 −174.1 (3) C6—C5—C4—C3 0.1 (8)
Co1—N2—C11—C12 9.5 (5) C2—C3—C4—C5 −0.6 (8)
C17—C12—C11—N2 2.9 (6) O6—C25—C26—C27 177.6 (4)
C13—C12—C11—N2 175.1 (4) C30—C25—C26—C27 −2.3 (6)
C25—O6—C32—C33 −174.0 (4) C28—C27—C26—C25 −0.2 (7)
C20—O5—C16—C15 −11.7 (6) C2—O4—C18—C19 −165.4 (4)
C20—O5—C16—C17 168.2 (4) C16—O5—C20—C21 −169.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O1 0.85 2.51 3.182 (5) 137
O1W—H1WA···O4 0.85 2.15 2.936 (5) 154
O1W—H1WB···O2 0.85 2.21 2.883 (5) 136
O1W—H1WB···O5 0.85 2.18 2.952 (5) 151
O7A—H7A···O1W 0.82 2.10 2.899 (19) 164
C8—H8C···O3 0.97 2.31 2.829 (5) 113

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2132).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Blower, P. J. (1998). Transition Met. Chem.23, 109–112.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424. [DOI] [PubMed]
  6. Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev.126, 1–69.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810007622/jh2132sup1.cif

e-66-0m366-sup1.cif (32.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007622/jh2132Isup2.hkl

e-66-0m366-Isup2.hkl (301.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES