Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 6;66(Pt 4):m377. doi: 10.1107/S1600536810007889

2-[(R)-Hydr­oxy(6-methoxy­quinolinium-4-yl)meth­yl]-8-vinyl-1-azoniabicyclo­[2.2.2]octane tetra­chloridoferrate(III) chloride monohydrate

Li-Zhuang Chen a,*, Mei-Na Huang a
PMCID: PMC2983884  PMID: 21580488

Abstract

In the title salt, (C20H26N2O2)[FeCl4]Cl·H2O, the FeIII atom exists in a tetra­hedral coordination environment. The cation, anions and water mol­ecules are linked by N—H⋯Cl, O—H⋯Cl and O—H⋯O hydrogen bonds into a layer network.

Related literature

For ferroelectricity and SHG of chiral coordination compounds, see: Fu et al. (2007); Qu et al. (2003). For related transition-metal complexes, see: Zhao et al. (2003).graphic file with name e-66-0m377-scheme1.jpg

Experimental

Crystal data

  • (C20H26N2O2)[FeCl4]Cl·H2O

  • M r = 577.54

  • Monoclinic, Inline graphic

  • a = 6.6838 (10) Å

  • b = 18.843 (2) Å

  • c = 10.8716 (10) Å

  • β = 104.918 (17)°

  • V = 1323.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 293 K

  • 0.30 × 0.26 × 0.22 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.82, T max = 0.88

  • 12145 measured reflections

  • 5166 independent reflections

  • 3650 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.118

  • S = 1.01

  • 5166 reflections

  • 281 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983), 2490 Friedel pairs

  • Flack parameter: 0.01 (2)

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810007889/ng2725sup1.cif

e-66-0m377-sup1.cif (20.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007889/ng2725Isup2.hkl

e-66-0m377-Isup2.hkl (253KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯Cl5 0.96 2.10 3.023 (4) 161
N2—H2C⋯Cl5i 0.96 2.08 3.039 (4) 173
O2—H2B⋯O3 0.85 2.00 2.799 (6) 156
O3—H3B⋯Cl5ii 0.85 2.71 3.070 (6) 108

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by a start-up grant from Jiangsu University of Science and Technology

supplementary crystallographic information

Comment

The existence of a chiral centre in an organic ligand is very important for the construction noncentrosymmetric or chiral coordination polymers that exhibit desirable physical properties such as ferroelectricity (Fu et al., 2007), Chiral quinine has a chiral centre which have shown tremendous scope in the synthesis of transition-metal complexes (Zhao et al., 2003; Qu et al.,2003). The construction of new members of this family of ligands is an important direction in the development of modern coordination chemistry. We report here the crystal structure of the title compound

The asymmetric unit of the title compound,C20H26N2O2.FeCl4.Cl.H2O(Fig.1), consists of one protoned quinine and a tetrachloro-ironanion with the FeIII ion in a slightly distorted tetrahedral coordination environment, The crystal structure is stabilized by intermolecular N—H···Cl, O—H···Cl and O—H···O hydrogen bonds.The H-bonds form of1D chain viewedalong the a-axis (Fig.2).

Experimental

A mixture of quinine (1 mmol, 0.324 g ), FeCl3(1 mmol, 0.156 g) and 10% aqueous HCl (6 ml) were mixed and dissolved in 20 ml water by heating to 353 K (0.5 h) forming a clear solution. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were formed after 11 days.

Refinement

All H atoms of quinine were placed in calculated positions , with C—H = 0.93-0.98 Å O—H = 0.85 Å and N—H = 0.96 Å, and re?ned using a riding model, with Uiso(H)=1.2Ueq(C, N, O) or 1.5 Ueq(C) for methyl H atoms.H3A and H3B were located in difference fourier maps.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

The packing viewed along the c axis. Hydrogen bonds are drawn as dashed lines

Crystal data

(C20H26N2O2)[FeCl4]Cl·H2O F(000) = 594
Mr = 577.54 Dx = 1.450 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 3650 reflections
a = 6.6838 (10) Å θ = 2.9–26.0°
b = 18.843 (2) Å µ = 1.10 mm1
c = 10.8716 (10) Å T = 293 K
β = 104.918 (17)° Block, yellow
V = 1323.1 (3) Å3 0.30 × 0.26 × 0.22 mm
Z = 2

Data collection

Rigaku SCXmini diffractometer 5166 independent reflections
Radiation source: fine-focus sealed tube 3650 reflections with I > 2σ(I)
graphite Rint = 0.038
Detector resolution: 13.6612 pixels mm-1 θmax = 26.0°, θmin = 2.9°
ω scans h = −8→8
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −23→23
Tmin = 0.82, Tmax = 0.88 l = −13→13
12145 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0558P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.001
5166 reflections Δρmax = 0.32 e Å3
281 parameters Δρmin = −0.30 e Å3
1 restraint Absolute structure: Flack (1983), 2490 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.01 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1691 (8) 0.4587 (3) 0.0478 (5) 0.0721 (13)
H1A 0.0700 0.4306 0.0706 0.087*
C2 0.2105 (7) 0.5255 (3) 0.0993 (4) 0.0631 (11)
H2A 0.1359 0.5426 0.1544 0.076*
C3 0.3610 (6) 0.5673 (2) 0.0701 (4) 0.0520 (10)
C4 0.4661 (6) 0.5415 (2) −0.0214 (4) 0.0508 (9)
C5 0.4159 (7) 0.4721 (3) −0.0707 (4) 0.0623 (11)
C6 0.5180 (8) 0.4417 (3) −0.1549 (4) 0.0762 (14)
H6A 0.4841 0.3962 −0.1865 0.091*
C7 0.6682 (8) 0.4797 (3) −0.1902 (4) 0.0750 (14)
H7A 0.7391 0.4595 −0.2447 0.090*
C8 0.7173 (8) 0.5502 (3) −0.1442 (4) 0.0646 (12)
C9 0.6189 (7) 0.5800 (2) −0.0622 (3) 0.0567 (10)
H9A 0.6521 0.6260 −0.0327 0.068*
C10 0.9150 (9) 0.6537 (3) −0.1527 (5) 0.0857 (16)
H10A 1.0218 0.6701 −0.1901 0.129*
H10B 0.9624 0.6567 −0.0616 0.129*
H10C 0.7938 0.6826 −0.1818 0.129*
C11 0.4201 (6) 0.6379 (2) 0.1375 (3) 0.0508 (9)
H11A 0.4540 0.6721 0.0781 0.061*
C12 0.6126 (6) 0.62488 (19) 0.2487 (3) 0.0467 (9)
H12A 0.7089 0.5959 0.2156 0.056*
C13 0.5696 (7) 0.5844 (2) 0.3628 (4) 0.0565 (10)
H13A 0.4229 0.5861 0.3583 0.068*
H13B 0.6098 0.5351 0.3601 0.068*
C14 0.6917 (7) 0.6182 (3) 0.4861 (4) 0.0622 (11)
H14A 0.6783 0.5893 0.5585 0.075*
C15 0.6009 (9) 0.6922 (3) 0.4946 (5) 0.0815 (14)
H15A 0.4575 0.6881 0.4976 0.098*
H15B 0.6774 0.7157 0.5718 0.098*
C16 0.6143 (8) 0.7356 (3) 0.3786 (5) 0.0770 (14)
H16A 0.4763 0.7477 0.3285 0.092*
H16B 0.6894 0.7793 0.4058 0.092*
C17 0.9372 (7) 0.6747 (3) 0.3784 (4) 0.0672 (12)
H17A 1.0108 0.7180 0.4108 0.081*
H17B 1.0137 0.6506 0.3261 0.081*
C18 0.9227 (7) 0.6269 (3) 0.4897 (4) 0.0667 (12)
H18A 0.9909 0.6513 0.5689 0.080*
C19 1.0326 (9) 0.5569 (3) 0.4871 (6) 0.0859 (16)
H19A 0.9833 0.5274 0.4172 0.103*
C20 1.1894 (11) 0.5353 (4) 0.5747 (7) 0.126 (3)
H20A 1.2428 0.5634 0.6459 0.151*
H20B 1.2493 0.4915 0.5667 0.151*
N1 0.2684 (6) 0.4343 (2) −0.0331 (4) 0.0677 (10)
H1B 0.2353 0.3875 −0.0673 0.081*
N2 0.7244 (6) 0.69263 (18) 0.2997 (3) 0.0574 (9)
H2C 0.7373 0.7211 0.2289 0.069*
O1 0.8655 (5) 0.5813 (2) −0.1892 (3) 0.0807 (10)
O2 0.2546 (5) 0.66425 (17) 0.1827 (3) 0.0638 (8)
H2B 0.2211 0.7051 0.1509 0.096*
Cl5 0.2012 (3) 0.27667 (8) −0.07702 (16) 0.1153 (6)
Cl3 0.8401 (4) 0.35869 (11) 0.53267 (16) 0.1329 (7)
Cl4 0.6722 (3) 0.24251 (8) 0.26529 (17) 0.1000 (5)
Cl2 0.3307 (3) 0.37297 (11) 0.3350 (2) 0.1408 (9)
Fe1 0.64976 (11) 0.35002 (3) 0.33590 (7) 0.0748 (2)
Cl1 0.7554 (2) 0.42527 (7) 0.21006 (13) 0.0801 (4)
O3 0.2399 (9) 0.7902 (3) 0.0442 (6) 0.156 (2)
H3B 0.1900 0.8190 0.0887 0.234*
H3A 0.1429 0.7743 −0.0162 0.234*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.073 (3) 0.061 (3) 0.081 (3) −0.006 (2) 0.017 (3) −0.003 (3)
C2 0.062 (3) 0.068 (3) 0.064 (3) 0.005 (2) 0.026 (2) −0.002 (2)
C3 0.056 (2) 0.056 (2) 0.043 (2) 0.0083 (18) 0.0107 (19) 0.0022 (18)
C4 0.056 (2) 0.052 (2) 0.040 (2) 0.0091 (18) 0.0052 (19) 0.0009 (18)
C5 0.070 (3) 0.065 (3) 0.048 (2) 0.010 (2) 0.008 (2) 0.000 (2)
C6 0.089 (4) 0.073 (3) 0.065 (3) 0.011 (3) 0.017 (3) −0.015 (3)
C7 0.083 (4) 0.094 (4) 0.045 (2) 0.018 (3) 0.012 (3) −0.015 (2)
C8 0.075 (3) 0.082 (3) 0.038 (2) 0.010 (2) 0.015 (2) −0.004 (2)
C9 0.068 (3) 0.064 (3) 0.038 (2) 0.005 (2) 0.013 (2) −0.0013 (19)
C10 0.090 (4) 0.110 (5) 0.063 (3) −0.019 (3) 0.033 (3) 0.002 (3)
C11 0.060 (3) 0.051 (2) 0.042 (2) 0.0082 (18) 0.0150 (19) 0.0027 (18)
C12 0.059 (2) 0.0405 (19) 0.0438 (19) 0.0040 (16) 0.0192 (18) −0.0006 (16)
C13 0.056 (2) 0.065 (3) 0.046 (2) −0.003 (2) 0.0091 (19) 0.010 (2)
C14 0.063 (3) 0.080 (3) 0.044 (2) 0.002 (2) 0.014 (2) 0.009 (2)
C15 0.095 (4) 0.083 (4) 0.073 (3) 0.011 (3) 0.034 (3) −0.015 (3)
C16 0.094 (4) 0.056 (3) 0.080 (3) 0.010 (2) 0.020 (3) −0.019 (2)
C17 0.065 (3) 0.073 (3) 0.064 (3) −0.012 (2) 0.017 (2) −0.004 (2)
C18 0.063 (3) 0.079 (3) 0.049 (2) 0.002 (2) −0.003 (2) −0.010 (2)
C19 0.068 (3) 0.087 (4) 0.094 (4) 0.002 (3) 0.006 (3) 0.001 (3)
C20 0.107 (5) 0.117 (5) 0.140 (6) 0.028 (4) 0.006 (5) 0.027 (5)
N1 0.076 (3) 0.053 (2) 0.071 (2) −0.0045 (19) 0.012 (2) −0.006 (2)
N2 0.069 (2) 0.0482 (19) 0.057 (2) −0.0006 (16) 0.0193 (18) 0.0030 (16)
O1 0.085 (2) 0.109 (3) 0.0543 (18) −0.005 (2) 0.0304 (17) −0.0106 (19)
O2 0.0635 (18) 0.0644 (19) 0.0641 (17) 0.0230 (15) 0.0178 (15) −0.0030 (15)
Cl5 0.1995 (19) 0.0617 (8) 0.1125 (12) 0.0004 (9) 0.0904 (13) −0.0178 (8)
Cl3 0.201 (2) 0.1015 (12) 0.0886 (10) 0.0237 (14) 0.0246 (11) 0.0161 (10)
Cl4 0.1138 (11) 0.0722 (8) 0.1292 (13) 0.0163 (8) 0.0588 (10) 0.0050 (8)
Cl2 0.1171 (13) 0.1379 (16) 0.203 (2) 0.0635 (11) 0.1064 (14) 0.0824 (15)
Fe1 0.0851 (5) 0.0634 (4) 0.0877 (5) 0.0254 (4) 0.0437 (4) 0.0243 (4)
Cl1 0.0798 (8) 0.0780 (8) 0.0897 (8) 0.0127 (6) 0.0352 (7) 0.0281 (7)
O3 0.163 (5) 0.090 (3) 0.211 (6) 0.004 (3) 0.040 (4) 0.019 (4)

Geometric parameters (Å, °)

C1—N1 1.314 (6) C13—H13B 0.9700
C1—C2 1.377 (7) C14—C15 1.533 (7)
C1—H1A 0.9300 C14—C18 1.543 (7)
C2—C3 1.378 (6) C14—H14A 0.9800
C2—H2A 0.9300 C15—C16 1.525 (7)
C3—C4 1.442 (6) C15—H15A 0.9700
C3—C11 1.521 (6) C15—H15B 0.9700
C4—C9 1.414 (6) C16—N2 1.503 (6)
C4—C5 1.420 (6) C16—H16A 0.9700
C5—N1 1.362 (6) C16—H16B 0.9700
C5—C6 1.397 (6) C17—N2 1.497 (6)
C6—C7 1.367 (7) C17—C18 1.531 (7)
C6—H6A 0.9300 C17—H17A 0.9700
C7—C8 1.428 (7) C17—H17B 0.9700
C7—H7A 0.9300 C18—C19 1.513 (7)
C8—O1 1.346 (6) C18—H18A 0.9800
C8—C9 1.358 (6) C19—C20 1.288 (8)
C9—H9A 0.9300 C19—H19A 0.9300
C10—O1 1.435 (7) C20—H20A 0.9300
C10—H10A 0.9600 C20—H20B 0.9300
C10—H10B 0.9600 N1—H1B 0.9599
C10—H10C 0.9600 N2—H2C 0.9601
C11—O2 1.411 (5) O2—H2B 0.8499
C11—C12 1.541 (5) Cl3—Fe1 2.196 (2)
C11—H11A 0.9800 Cl4—Fe1 2.1852 (16)
C12—N2 1.511 (5) Cl2—Fe1 2.1734 (17)
C12—C13 1.545 (5) Fe1—Cl1 2.2085 (13)
C12—H12A 0.9800 O3—H3B 0.8501
C13—C14 1.517 (6) O3—H3A 0.8499
C13—H13A 0.9700
N1—C1—C2 120.6 (5) C15—C14—C18 108.1 (4)
N1—C1—H1A 119.7 C13—C14—H14A 109.7
C2—C1—H1A 119.7 C15—C14—H14A 109.7
C1—C2—C3 120.8 (4) C18—C14—H14A 109.7
C1—C2—H2A 119.6 C16—C15—C14 109.2 (4)
C3—C2—H2A 119.6 C16—C15—H15A 109.8
C2—C3—C4 118.7 (4) C14—C15—H15A 109.8
C2—C3—C11 120.2 (4) C16—C15—H15B 109.8
C4—C3—C11 121.0 (4) C14—C15—H15B 109.8
C9—C4—C5 118.3 (4) H15A—C15—H15B 108.3
C9—C4—C3 124.2 (4) N2—C16—C15 108.9 (4)
C5—C4—C3 117.5 (4) N2—C16—H16A 109.9
N1—C5—C6 119.7 (5) C15—C16—H16A 109.9
N1—C5—C4 119.2 (4) N2—C16—H16B 109.9
C6—C5—C4 121.1 (5) C15—C16—H16B 109.9
C7—C6—C5 119.1 (5) H16A—C16—H16B 108.3
C7—C6—H6A 120.4 N2—C17—C18 109.9 (4)
C5—C6—H6A 120.4 N2—C17—H17A 109.7
C6—C7—C8 120.6 (4) C18—C17—H17A 109.7
C6—C7—H7A 119.7 N2—C17—H17B 109.7
C8—C7—H7A 119.7 C18—C17—H17B 109.7
O1—C8—C9 125.8 (5) H17A—C17—H17B 108.2
O1—C8—C7 113.7 (4) C19—C18—C17 111.6 (4)
C9—C8—C7 120.5 (5) C19—C18—C14 113.2 (4)
C8—C9—C4 120.3 (4) C17—C18—C14 108.0 (4)
C8—C9—H9A 119.8 C19—C18—H18A 107.9
C4—C9—H9A 119.8 C17—C18—H18A 107.9
O1—C10—H10A 109.5 C14—C18—H18A 107.9
O1—C10—H10B 109.5 C20—C19—C18 124.7 (6)
H10A—C10—H10B 109.5 C20—C19—H19A 117.7
O1—C10—H10C 109.5 C18—C19—H19A 117.7
H10A—C10—H10C 109.5 C19—C20—H20A 120.0
H10B—C10—H10C 109.5 C19—C20—H20B 120.0
O2—C11—C3 110.2 (4) H20A—C20—H20B 120.0
O2—C11—C12 110.7 (3) C1—N1—C5 123.2 (4)
C3—C11—C12 107.4 (3) C1—N1—H1B 118.4
O2—C11—H11A 109.5 C5—N1—H1B 118.4
C3—C11—H11A 109.5 C17—N2—C16 109.1 (3)
C12—C11—H11A 109.5 C17—N2—C12 109.1 (3)
N2—C12—C11 112.8 (3) C16—N2—C12 113.4 (4)
N2—C12—C13 107.4 (3) C17—N2—H2C 108.4
C11—C12—C13 114.7 (3) C16—N2—H2C 108.4
N2—C12—H12A 107.2 C12—N2—H2C 108.4
C11—C12—H12A 107.2 C8—O1—C10 116.8 (4)
C13—C12—H12A 107.2 C11—O2—H2B 109.0
C14—C13—C12 109.5 (3) Cl2—Fe1—Cl4 109.81 (9)
C14—C13—H13A 109.8 Cl2—Fe1—Cl3 108.14 (9)
C12—C13—H13A 109.8 Cl4—Fe1—Cl3 109.65 (7)
C14—C13—H13B 109.8 Cl2—Fe1—Cl1 109.82 (6)
C12—C13—H13B 109.8 Cl4—Fe1—Cl1 108.41 (6)
H13A—C13—H13B 108.2 Cl3—Fe1—Cl1 111.00 (8)
C13—C14—C15 107.7 (4) H3B—O3—H3A 109.5
C13—C14—C18 112.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1B···Cl5 0.96 2.10 3.023 (4) 161
N2—H2C···Cl5i 0.96 2.08 3.039 (4) 173
O2—H2B···O3 0.85 2.00 2.799 (6) 156
O3—H3B···Cl5ii 0.85 2.71 3.070 (6) 108

Symmetry codes: (i) −x+1, y+1/2, −z; (ii) −x, y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2725).

References

  1. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  2. Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc.129, 5346–5347. [DOI] [PubMed]
  3. Qu, Z.-R., Chen, Z.-F., Zhang, J., Xiong, R.-G., Abrahams, B. F. & Xue, Z.-L. (2003). Organometallics 22, 2814–2816.
  4. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Zhao, H., Qu, Z.-R., Ye, Q., Abrahams, B. F., Wang, Y.-P., Liu, Z. G., Xue, Z.-L., Xiong, R.-G. & You, X.-Z. (2003). Chem. Mater.15, 4166–4168.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810007889/ng2725sup1.cif

e-66-0m377-sup1.cif (20.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007889/ng2725Isup2.hkl

e-66-0m377-Isup2.hkl (253KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES