Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 13;66(Pt 4):o805. doi: 10.1107/S160053681000869X

12-(4-Methoxy­phen­yl)-10-phenyl-3,4,5,6,8,10-hexa­azatricyclo­[7.3.0.02,6]dodeca-1(9),2,4,7,11-penta­ene

Mukesh M Jotani a,, Rina D Shah b, Edward R T Tiekink c,*
PMCID: PMC2983952  PMID: 21580640

Abstract

In the title compound, C19H14N6O, the fused 12-membered tetra­zolo/pyrimidine/pyrrole ring system is almost planar (r.m.s. deviation = 0.013 Å). The 4-methoxy­phenyl and phenyl substituents on the pyrrole ring are both twisted with respect to the fused-ring system [dihedral angles = 25.39 (18) and 36.42 (18)°, respectively]. Intra­molecular C—H⋯N inter­actions occur. In the crystal, mol­ecules pack into layers in the ac plane and these are connected along the b axis via C—H⋯π and π–π [centroid–centroid separation = 3.608 (3) Å] inter­actions.

Related literature

For background to the biological activity of fused tetra­zolopyrimidines, see: Shishoo & Jain (1992); Desai & Shah (2006). For related structures, see: Jotani et al. (2010a ,b ); Shah et al. (2010). For semi-empirical quantum chemical calculations, see: Stewart (2009).graphic file with name e-66-0o805-scheme1.jpg

Experimental

Crystal data

  • C19H14N6O

  • M r = 342.36

  • Orthorhombic, Inline graphic

  • a = 9.3537 (7) Å

  • b = 23.6045 (19) Å

  • c = 7.1543 (6) Å

  • V = 1579.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.967, T max = 0.981

  • 16155 measured reflections

  • 1666 independent reflections

  • 1344 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.142

  • S = 1.12

  • 1666 reflections

  • 236 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681000869X/hb5355sup1.cif

e-66-0o805-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000869X/hb5355Isup2.hkl

e-66-0o805-Isup2.hkl (80.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯N4 0.93 2.50 3.257 (5) 138
C15—H15⋯N5 0.93 2.57 3.020 (5) 111
C11—H11⋯Cg1i 0.93 2.91 3.684 (5) 141
C13—H13c⋯Cg1ii 0.96 2.72 3.459 (5) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are thankful to the Department of Science and Technology (DST), and the SAIF, IIT Madras, Chennai, India, for the X-ray data collection.

supplementary crystallographic information

Comment

Interest in fused tetrazolopyrimidines relates, in part, to their biological activities (Shishoo & Jain, 1992; Desai & Shah, 2006). In continuation of complementary structural studies (Jotani et al. 2010a; Jotani et al. 2010b; Shah et al. 2010), the synthesis and X-ray crystal structure determination of the title compound, (I), are reported herein.

The molecule of (I) comprises a central pyrimidine ring (N1,N5,C1–C4) to which is fused a tetrazolo ring (N1–N4,C2) and a di-substituted pyrrole ring (N6,C3–C6), Fig. 1. These atoms form a plane with dihedral angles formed between the pyrimidine and the tetrazolo and pyrrole rings being 0.1 (3) and 1.5 (3) °, respectively; the dihedral angle formed between the tetrazolo and pyrrole rings is 1.6 (3) °. The r.m.s. deviation of the 12 non-hydrogen atoms comprising the fused ring system is 0.013 Å. The presence of intramolecular C–H···N interactions, Table 1, are noted and these result in the formation of S(6) and S(7) rings. The 4-methoxyphenyl and benzene substituents on the pyrrole ring are not co-planar with the fused-ring system as seen in the C3–C6–C7–C8 and C4–N6–C14–C15 torsion angles of 24.2 (9) and -39.1 (7) °, respectively.

In the crystal packing, the molecules pack into layers parallel to (0 1 0) with connections between the layers provided by C–H···π, Table 1, and π–π interactions between the five-membered tetrazolo and pyrrole rings [Cg(N1–N4,C2)···Cg(N6,C3–C6)i = 3.608 (3) Å, angle between planes = 5.0 (3) ° for i: 1-x, -y, -1/2+z], Fig. 2.

The Semi-empirical Quantum Chemical Calculations were performed on the experimental structure using the MOPAC2009 programme (Stewart, 2009) to optimize the structure with the Parametrization Model 6 (PM6) approximation together with the restricted Hartree-Fock closed-shell wavefunction; minimizations were terminated at an r.m.s. gradient of less than 0.01 kJ mol-1 Å-1. The most significant difference between the experimental and calculated structures is found in the relative orientation of the 4-methoxyphenyl ring with respect to the pyrrol ring to which it is bonded. This is quantified in the C3–C6–C7–C8 torsion angle of 38.9 ° cf. 24.2 (9) ° in the experimental structure. The orientation of the pyrrole-benzene ring remains unaffected.as seen in the (torsion angles is C4–N6–C14–C15 torsion angle of -38.8 ° cf. -39.1 (7) ° (experiment).

Experimental

To a well stirred mixture of 5-(4-methoxyphenyl)-7-phenyl-4-chloro-7H-pyrrolo[2,3-d]pyrimidine (5 mmol) and Aliquat 336 (0.5 mmol) in toluene (25 ml) was added sodium azide (6 mmol) in water (5 ml). The reaction mixture was stirred under reflux conditions for 1.5 h. Thereafter, the two phases were separated. The aqueous phase was extracted with toluene and the combined organic layers were washed with water. The excess solvent was distilled off under reduced pressure. The obtained solid was dried to yield (I) which was crystallized from dioxane to obtain the final product (70 % yield, m.pt. 489–491 K). The crystals used for X-ray crystallography were obtained by slow evaporation from the an ethanol solution of (I).

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(parent atom). In the absence of significant anomalous scattering effects, 1378 Friedel pairs were averaged in the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.

Fig. 2.

Fig. 2.

A view in projection down the a axis in (I), highlighting the C–H···π and π–π interactions (purple dashed lines). Colour code: O, red; N, blue; C, grey; and H, green.

Crystal data

C19H14N6O F(000) = 712
Mr = 342.36 Dx = 1.440 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 2330 reflections
a = 9.3537 (7) Å θ = 2.0–32.0°
b = 23.6045 (19) Å µ = 0.10 mm1
c = 7.1543 (6) Å T = 293 K
V = 1579.6 (2) Å3 Block, colourless
Z = 4 0.35 × 0.25 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 1666 independent reflections
Radiation source: fine-focus sealed tube 1344 reflections with I > 2σ(I)
graphite Rint = 0.051
ω and φ scan θmax = 25.9°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→10
Tmin = 0.967, Tmax = 0.981 k = −28→26
16155 measured reflections l = −8→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0924P)2 + 0.1003P] where P = (Fo2 + 2Fc2)/3
1666 reflections (Δ/σ)max = 0.001
236 parameters Δρmax = 0.50 e Å3
1 restraint Δρmin = −0.27 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1311 (2) −0.24532 (10) 0.1991 (5) 0.0436 (7)
N1 0.6887 (3) 0.03688 (12) 0.2217 (6) 0.0388 (7)
N2 0.8226 (3) 0.01376 (15) 0.2170 (8) 0.0538 (9)
N3 0.8028 (3) −0.04038 (15) 0.2108 (8) 0.0570 (10)
N4 0.6627 (3) −0.05488 (13) 0.2095 (7) 0.0490 (9)
N5 0.5225 (3) 0.11037 (11) 0.2330 (6) 0.0394 (8)
N6 0.2784 (3) 0.07783 (11) 0.2260 (5) 0.0345 (7)
C1 0.6538 (4) 0.09319 (16) 0.2303 (7) 0.0434 (9)
H1 0.7269 0.1199 0.2342 0.052*
C2 0.5911 (3) −0.00622 (14) 0.2167 (8) 0.0368 (8)
C3 0.4447 (3) 0.00972 (13) 0.2204 (7) 0.0326 (7)
C4 0.4226 (3) 0.06828 (13) 0.2276 (7) 0.0338 (8)
C5 0.2112 (3) 0.02605 (13) 0.2160 (7) 0.0374 (8)
H5 0.1126 0.0211 0.2128 0.045*
C6 0.3086 (3) −0.01734 (14) 0.2112 (7) 0.0348 (8)
C7 0.2701 (3) −0.07795 (14) 0.2027 (7) 0.0336 (8)
C8 0.3593 (4) −0.12011 (15) 0.2688 (6) 0.0413 (11)
H8 0.4494 −0.1105 0.3136 0.050*
C9 0.3172 (4) −0.17651 (15) 0.2697 (7) 0.0430 (11)
H9 0.3781 −0.2043 0.3161 0.052*
C10 0.1848 (4) −0.19110 (13) 0.2015 (7) 0.0356 (8)
C11 0.0954 (4) −0.14989 (15) 0.1288 (6) 0.0380 (9)
H11 0.0071 −0.1597 0.0786 0.046*
C12 0.1390 (4) −0.09411 (16) 0.1317 (7) 0.0382 (9)
H12 0.0782 −0.0665 0.0842 0.046*
C13 0.2110 (4) −0.28780 (15) 0.2954 (7) 0.0487 (11)
H13A 0.3060 −0.2896 0.2449 0.073*
H13B 0.1650 −0.3239 0.2802 0.073*
H13C 0.2157 −0.2785 0.4259 0.073*
C14 0.2042 (3) 0.13107 (13) 0.2232 (7) 0.0339 (8)
C15 0.2549 (4) 0.17606 (15) 0.3270 (7) 0.0375 (9)
H15 0.3365 0.1721 0.4002 0.045*
C16 0.1822 (4) 0.22714 (15) 0.3202 (7) 0.0448 (10)
H16 0.2173 0.2582 0.3860 0.054*
C17 0.0586 (4) 0.23249 (15) 0.2172 (8) 0.0462 (9)
H17 0.0097 0.2668 0.2137 0.055*
C18 0.0080 (4) 0.18610 (15) 0.1186 (7) 0.0456 (10)
H18 −0.0765 0.1892 0.0511 0.055*
C19 0.0800 (4) 0.13608 (15) 0.1191 (7) 0.0405 (9)
H19 0.0461 0.1055 0.0502 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0420 (14) 0.0314 (12) 0.057 (2) −0.0069 (10) −0.0019 (15) 0.0016 (15)
N1 0.0246 (14) 0.0442 (16) 0.048 (2) 0.0005 (12) −0.0045 (17) 0.0019 (19)
N2 0.0259 (15) 0.062 (2) 0.073 (3) 0.0029 (14) 0.003 (2) 0.000 (3)
N3 0.0294 (16) 0.057 (2) 0.085 (3) 0.0061 (14) 0.005 (2) 0.000 (3)
N4 0.0281 (15) 0.0476 (19) 0.071 (3) 0.0056 (12) 0.0001 (18) −0.002 (2)
N5 0.0326 (15) 0.0351 (15) 0.050 (2) −0.0048 (12) −0.0031 (17) 0.0032 (18)
N6 0.0292 (14) 0.0285 (14) 0.046 (2) 0.0018 (10) −0.0029 (17) 0.0011 (16)
C1 0.0353 (19) 0.044 (2) 0.051 (3) −0.0068 (15) −0.003 (2) 0.002 (2)
C2 0.0297 (16) 0.0390 (18) 0.042 (2) 0.0006 (14) 0.001 (2) −0.001 (2)
C3 0.0287 (16) 0.0324 (16) 0.0366 (19) 0.0006 (13) 0.001 (2) −0.001 (2)
C4 0.0301 (16) 0.0333 (17) 0.038 (2) −0.0008 (13) −0.0004 (18) 0.0011 (19)
C5 0.0277 (16) 0.0322 (18) 0.052 (2) −0.0003 (13) 0.000 (2) −0.002 (2)
C6 0.0284 (16) 0.0319 (17) 0.044 (2) 0.0006 (13) 0.000 (2) 0.004 (2)
C7 0.0290 (17) 0.0308 (17) 0.041 (2) 0.0017 (13) 0.0057 (18) −0.0007 (18)
C8 0.0305 (19) 0.038 (2) 0.055 (3) −0.0003 (15) −0.0042 (17) −0.0009 (18)
C9 0.034 (2) 0.0303 (18) 0.065 (3) 0.0055 (15) −0.0018 (19) 0.0029 (18)
C10 0.0358 (18) 0.0299 (17) 0.041 (2) −0.0039 (13) 0.0079 (19) −0.0023 (18)
C11 0.0292 (17) 0.042 (2) 0.042 (2) −0.0046 (15) −0.0006 (17) 0.0028 (19)
C12 0.0294 (18) 0.0359 (19) 0.049 (2) 0.0050 (15) 0.0026 (18) 0.0034 (18)
C13 0.059 (3) 0.0315 (19) 0.055 (3) 0.0006 (18) 0.003 (2) 0.0022 (19)
C14 0.0313 (17) 0.0298 (16) 0.041 (2) 0.0008 (13) 0.002 (2) 0.0026 (19)
C15 0.0334 (19) 0.0349 (19) 0.044 (2) 0.0012 (15) −0.0025 (17) 0.0013 (18)
C16 0.048 (2) 0.035 (2) 0.051 (3) 0.0011 (17) 0.002 (2) −0.0088 (19)
C17 0.047 (2) 0.0377 (19) 0.054 (3) 0.0110 (15) 0.003 (2) 0.001 (2)
C18 0.038 (2) 0.043 (2) 0.056 (3) 0.0061 (16) −0.010 (2) 0.004 (2)
C19 0.038 (2) 0.0316 (18) 0.052 (3) −0.0037 (15) −0.006 (2) −0.0005 (18)

Geometric parameters (Å, °)

O1—C10 1.375 (4) C8—C9 1.388 (5)
O1—C13 1.428 (5) C8—H8 0.9300
N1—N2 1.367 (4) C9—C10 1.374 (5)
N1—C2 1.367 (4) C9—H9 0.9300
N1—C1 1.370 (5) C10—C11 1.384 (5)
N2—N3 1.292 (5) C11—C12 1.379 (5)
N3—N4 1.355 (4) C11—H11 0.9300
N4—C2 1.330 (4) C12—H12 0.9300
N5—C1 1.294 (4) C13—H13A 0.9600
N5—C4 1.364 (4) C13—H13B 0.9600
N6—C4 1.368 (4) C13—H13C 0.9600
N6—C5 1.376 (4) C14—C15 1.380 (5)
N6—C14 1.435 (4) C14—C19 1.385 (5)
C1—H1 0.9300 C15—C16 1.385 (5)
C2—C3 1.420 (4) C15—H15 0.9300
C3—C4 1.399 (5) C16—C17 1.377 (6)
C3—C6 1.426 (4) C16—H16 0.9300
C5—C6 1.371 (4) C17—C18 1.386 (6)
C5—H5 0.9300 C17—H17 0.9300
C6—C7 1.477 (4) C18—C19 1.359 (5)
C7—C12 1.380 (5) C18—H18 0.9300
C7—C8 1.382 (5) C19—H19 0.9300
C10—O1—C13 117.2 (3) C10—C9—H9 120.2
N2—N1—C2 108.3 (3) C8—C9—H9 120.2
N2—N1—C1 127.3 (3) C9—C10—O1 124.5 (3)
C2—N1—C1 124.4 (3) C9—C10—C11 120.1 (3)
N3—N2—N1 105.4 (3) O1—C10—C11 115.4 (3)
N2—N3—N4 112.9 (3) C12—C11—C10 119.1 (3)
C2—N4—N3 105.6 (3) C12—C11—H11 120.4
C1—N5—C4 114.9 (3) C10—C11—H11 120.4
C4—N6—C5 107.7 (3) C11—C12—C7 122.1 (3)
C4—N6—C14 128.4 (3) C11—C12—H12 118.9
C5—N6—C14 123.8 (3) C7—C12—H12 118.9
N5—C1—N1 122.0 (3) O1—C13—H13A 109.5
N5—C1—H1 119.0 O1—C13—H13B 109.5
N1—C1—H1 119.0 H13A—C13—H13B 109.5
N4—C2—N1 107.9 (3) O1—C13—H13C 109.5
N4—C2—C3 135.6 (3) H13A—C13—H13C 109.5
N1—C2—C3 116.5 (3) H13B—C13—H13C 109.5
C4—C3—C2 113.9 (3) C15—C14—C19 120.8 (3)
C4—C3—C6 108.2 (3) C15—C14—N6 120.0 (3)
C2—C3—C6 137.8 (3) C19—C14—N6 119.2 (3)
N5—C4—N6 123.7 (3) C14—C15—C16 118.8 (4)
N5—C4—C3 128.3 (3) C14—C15—H15 120.6
N6—C4—C3 107.9 (3) C16—C15—H15 120.6
C6—C5—N6 111.2 (3) C17—C16—C15 120.7 (4)
C6—C5—H5 124.4 C17—C16—H16 119.6
N6—C5—H5 124.4 C15—C16—H16 119.6
C5—C6—C3 104.9 (3) C16—C17—C18 119.1 (3)
C5—C6—C7 124.2 (3) C16—C17—H17 120.4
C3—C6—C7 130.9 (3) C18—C17—H17 120.4
C12—C7—C8 117.6 (3) C19—C18—C17 121.1 (4)
C12—C7—C6 120.0 (3) C19—C18—H18 119.5
C8—C7—C6 122.4 (3) C17—C18—H18 119.5
C7—C8—C9 121.4 (3) C18—C19—C14 119.4 (4)
C7—C8—H8 119.3 C18—C19—H19 120.3
C9—C8—H8 119.3 C14—C19—H19 120.3
C10—C9—C8 119.6 (3)
C2—N1—N2—N3 −0.4 (7) C2—C3—C6—C5 −177.7 (6)
C1—N1—N2—N3 179.5 (5) C4—C3—C6—C7 −179.5 (5)
N1—N2—N3—N4 0.5 (8) C2—C3—C6—C7 3.6 (11)
N2—N3—N4—C2 −0.5 (7) C5—C6—C7—C12 23.8 (8)
C4—N5—C1—N1 0.3 (7) C3—C6—C7—C12 −157.7 (5)
N2—N1—C1—N5 179.6 (5) C5—C6—C7—C8 −154.3 (5)
C2—N1—C1—N5 −0.5 (8) C3—C6—C7—C8 24.2 (9)
N3—N4—C2—N1 0.2 (6) C12—C7—C8—C9 −2.1 (7)
N3—N4—C2—C3 −179.7 (7) C6—C7—C8—C9 176.0 (4)
N2—N1—C2—N4 0.1 (6) C7—C8—C9—C10 0.8 (7)
C1—N1—C2—N4 −179.8 (5) C8—C9—C10—O1 −178.6 (4)
N2—N1—C2—C3 −179.9 (5) C8—C9—C10—C11 1.3 (7)
C1—N1—C2—C3 0.2 (8) C13—O1—C10—C9 8.3 (6)
N4—C2—C3—C4 −179.7 (6) C13—O1—C10—C11 −171.7 (4)
N1—C2—C3—C4 0.3 (7) C9—C10—C11—C12 −2.1 (7)
N4—C2—C3—C6 −2.9 (12) O1—C10—C11—C12 177.8 (4)
N1—C2—C3—C6 177.1 (6) C10—C11—C12—C7 0.8 (7)
C1—N5—C4—N6 −178.8 (5) C8—C7—C12—C11 1.3 (7)
C1—N5—C4—C3 0.2 (8) C6—C7—C12—C11 −176.9 (4)
C5—N6—C4—N5 178.6 (5) C4—N6—C14—C15 −39.1 (7)
C14—N6—C4—N5 2.3 (8) C5—N6—C14—C15 145.1 (4)
C5—N6—C4—C3 −0.6 (5) C4—N6—C14—C19 142.5 (5)
C14—N6—C4—C3 −176.9 (5) C5—N6—C14—C19 −33.3 (7)
C2—C3—C4—N5 −0.6 (8) C19—C14—C15—C16 −2.3 (6)
C6—C3—C4—N5 −178.3 (5) N6—C14—C15—C16 179.3 (4)
C2—C3—C4—N6 178.6 (4) C14—C15—C16—C17 2.3 (7)
C6—C3—C4—N6 0.9 (6) C15—C16—C17—C18 −0.5 (7)
C4—N6—C5—C6 0.1 (5) C16—C17—C18—C19 −1.4 (7)
C14—N6—C5—C6 176.6 (5) C17—C18—C19—C14 1.4 (7)
N6—C5—C6—C3 0.4 (6) C15—C14—C19—C18 0.5 (7)
N6—C5—C6—C7 179.2 (5) N6—C14—C19—C18 178.8 (4)
C4—C3—C6—C5 −0.8 (6)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 ring.
D—H···A D—H H···A D···A D—H···A
C8—H8···N4 0.93 2.50 3.257 (5) 138
C15—H15···N5 0.93 2.57 3.020 (5) 111
C11—H11···Cg1i 0.93 2.91 3.684 (5) 141
C13—H13c···Cg1ii 0.96 2.72 3.459 (5) 134

Symmetry codes: (i) −x, −y, z−1/2; (ii) −x+1/2, y−1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5355).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Desai, N. D. & Shah, R. D. (2006). Synthesis, 19, 3275–3278.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Jotani, M. M., Shah, R. D. & Jasinski, J. P. (2010a). Acta Cryst. E66, o212–o213. [DOI] [PMC free article] [PubMed]
  6. Jotani, M. M., Shah, R. D., Jasinski, J. P. & Butcher, R. J. (2010b). Acta Cryst. E66, o574. [DOI] [PMC free article] [PubMed]
  7. Shah, R. D., Jotani, M. M. & Jasinski, J. P. (2010). Acta Cryst. E66, o601–o602. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Shishoo, C. J. & Jain, S. K. (1992). J. Heterocycl. Chem.29, 883–893.
  11. Stewart, J. P. (2009). MOPAC2009. Stewart Computational Chemistry. Available from web: http://OpenMOPAC.net.
  12. Westrip, S. P. (2010). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681000869X/hb5355sup1.cif

e-66-0o805-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000869X/hb5355Isup2.hkl

e-66-0o805-Isup2.hkl (80.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES