Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 27;66(Pt 4):o932. doi: 10.1107/S1600536810010731

1′-Ethyl­sulfanyl-1,1′-bicyclo­hexyl-2-one

Lalit Kumar Sharma a, Sean Parkin a, Gregory I Elliott a,b,*
PMCID: PMC2983972  PMID: 21580742

Abstract

There are two independent molecules in the asymmetric unit of the title cyclo­hexa­none derivative, C14H24OS, in which both cyclo­hexane rings exhibit chair conformations. They are also equatorial to each other, which permits the ethanethiol substituent to be in a syn conformation with the α-H atom of the parent attached cyclo­hexa­none.

Related literature

For background literature on the synthesis, see Bach & Klix (1985); Trost et al. (1976); Reetz & Giannis (1981). For the preparation of the starting materials, see: Ito et al. (1979); Kumar & Dev (1983).graphic file with name e-66-0o932-scheme1.jpg

Experimental

Crystal data

  • C14H24OS

  • M r = 240.39

  • Triclinic, Inline graphic

  • a = 10.3662 (2) Å

  • b = 11.2090 (2) Å

  • c = 11.5026 (2) Å

  • α = 92.5786 (8)°

  • β = 101.7513 (8)°

  • γ = 90.2145 (8)°

  • V = 1307.09 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 90 K

  • 0.18 × 0.15 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) T min = 0.960, T max = 0.978

  • 32350 measured reflections

  • 5986 independent reflections

  • 5000 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.092

  • S = 1.05

  • 5986 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97and local procedures.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810010731/ng2746sup1.cif

e-66-0o932-sup1.cif (26.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010731/ng2746Isup2.hkl

e-66-0o932-Isup2.hkl (293KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Self condensation of cyclohexanone followed by in situ dehydration provides an isomeric mixture of products, specifically, 2-(1-cyclohexen-l-yl)cyclohexanone and cyclohexylidenecyclohexanone. In our efforts to obtain only cyclohexylidinecyclohexanone, an improved route was developed. The title compound, C14H24OS, was prepared through a Lewis acid mediated alkylation between 1,1-bis(ethylsulfanyl)cyclohexane and 1-trimethylsilyloxycyclohexene at low temperature. The title compound can be oxidized with NaIO4 and the corresponding cyclohexylidinecyclohexanone is produced as the only product in moderate yield.

The conformational energy for a cyclohexyl ring is 2.15 kcal/mol while the energy for ethanethiol is approxiamately 0.7 kcal/mol. From this information it is expected that both ring systems would be in an equatorial position leaving the thiol axial. The xray analysis provided agreement to our hypothesis.

Experimental

SnCl4 (10 ml, 1M in CH2Cl2, 10 mmol) was added to 20 ml of anhydrous CH2Cl2 at –60°C. A cooled (–60°C) solution of 1,1-bis(ethylsulfanyl)cyclohexane (2.04 g, 10 mmol) in 5 ml anhydrous CH2Cl2 was added dropwise. Immediately following the final addition of 1,1-bis(ethylsulfanyl)cyclohexane was slowly added a cooled (–60°C) solution of 1-trimethylsilyloxycyclohexene (1.70 g , 10 mmol) in 5 ml anhydrous CH2Cl2. The solution stirred at –60°C for 45 min and was poured on to 100 ml of ice water. The aqueous phase was extracted with CH2Cl2(3 X 50 ml). The combined organic phases were washed with 10% aqueous NaHCO3 (1 X 100 ml), water (1 X 100 ml) and dried over MgSO4. The filtrate was concentrated under reduced pressure providing the title compound (2.05 g) as a white solid. Recrystallization from a solution of hexane–CH2Cl2 (3:1) provided 1.90 g (79% yield) of 1'-(ethylsulfanyl)-1,1'-bi(cyclohexyl)-2-one. mp = 72°C. 1H NMR (CDCl3, 500 MHz) δ : 2.58–2.52 (m,1H); 2.47 (dd, J=11.7, 5 Hz, 1H); 2.37 (dq, J=7.3, 1 Hz, 2H); 2.34–2.24 (m, 2H); 2.06–1.88 (m, 4H); 1.84–1.74 (m, 1H); 1.74–1.56 (m, 6H); 1.56–1.48 (m, 1H); 1.48–1.40 (m, 2H); 1.32–1.22 (m, 1H); 1.22–1.16 (dt, J=7.5, 1.5 Hz, 3H). 13C NMR (CDCl3, 125 MHz) δ: 212.2, 58.5, 52.2, 44.3, 32.6, 31.4, 29.9, 28.6, 25.9, 25.7, 22.0, 21.9, 21.1, 14.1. IR (νmax): 2931, 1697, 1500, 1310, 1115, 1063, 884 cm-1.

1,1-bis(ethylsulfanyl)cyclohexane was prepared by following the procedure of Kumar & Dev (1983) and 1-trimethylsilyloxycyclohexene was prepared by following the procedure of Ito et al. (1979).

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 1.00 Å (R3CH), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom.

Figures

Fig. 1.

Fig. 1.

Displacemt ellipsoids drawn at 50% probability level.

Crystal data

C14H24OS Z = 4
Mr = 240.39 F(000) = 528
Triclinic, P1 Dx = 1.222 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.3662 (2) Å Cell parameters from 5942 reflections
b = 11.2090 (2) Å θ = 1.0–27.4°
c = 11.5026 (2) Å µ = 0.23 mm1
α = 92.5786 (8)° T = 90 K
β = 101.7513 (8)° Rod, colourless
γ = 90.2145 (8)° 0.18 × 0.15 × 0.10 mm
V = 1307.09 (4) Å3

Data collection

Nonius KappaCCD diffractometer 5986 independent reflections
Radiation source: fine-focus sealed tube 5000 reflections with I > 2σ(I)
graphite Rint = 0.037
Detector resolution: 9.1 pixels mm-1 θmax = 27.5°, θmin = 1.8°
ω scans at fixed χ = 55° h = −13→13
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) k = −14→14
Tmin = 0.960, Tmax = 0.978 l = −14→14
32350 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.4279P] where P = (Fo2 + 2Fc2)/3
5986 reflections (Δ/σ)max = 0.002
291 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.88224 (3) 0.94850 (3) 0.30582 (3) 0.01526 (9)
O1A 0.53397 (9) 0.80151 (9) −0.01038 (8) 0.0194 (2)
C1A 0.72797 (12) 0.89244 (11) 0.20595 (11) 0.0130 (2)
C2A 0.68219 (13) 0.77443 (11) 0.24908 (11) 0.0152 (3)
H2A1 0.6038 0.7436 0.1911 0.018*
H2A2 0.7529 0.7150 0.2511 0.018*
C3A 0.64777 (14) 0.78678 (12) 0.37204 (12) 0.0182 (3)
H3A1 0.7281 0.8086 0.4321 0.022*
H3A2 0.6142 0.7092 0.3924 0.022*
C4A 0.54321 (14) 0.88253 (12) 0.37498 (12) 0.0195 (3)
H4A1 0.4601 0.8572 0.3203 0.023*
H4A2 0.5255 0.8920 0.4563 0.023*
C5A 0.59008 (13) 1.00195 (12) 0.33805 (12) 0.0172 (3)
H5A1 0.6682 1.0309 0.3974 0.021*
H5A2 0.5196 1.0616 0.3367 0.021*
C6A 0.62570 (13) 0.99037 (12) 0.21515 (11) 0.0154 (3)
H6A1 0.6612 1.0679 0.1970 0.019*
H6A2 0.5446 0.9720 0.1547 0.019*
C7A 0.75555 (12) 0.87558 (11) 0.07876 (11) 0.0132 (2)
H7A 0.8342 0.8230 0.0853 0.016*
C8A 0.64834 (13) 0.81697 (11) −0.01800 (11) 0.0153 (3)
C9A 0.69592 (14) 0.78561 (12) −0.13183 (12) 0.0188 (3)
H9A1 0.6224 0.7492 −0.1917 0.023*
H9A2 0.7671 0.7263 −0.1158 0.023*
C10A 0.74760 (13) 0.89752 (12) −0.18129 (12) 0.0176 (3)
H10A 0.7887 0.8737 −0.2492 0.021*
H10B 0.6731 0.9506 −0.2105 0.021*
C11A 0.84846 (13) 0.96463 (12) −0.08583 (11) 0.0162 (3)
H11A 0.8741 1.0401 −0.1171 0.019*
H11B 0.9284 0.9157 −0.0647 0.019*
C12A 0.79214 (13) 0.99232 (11) 0.02493 (12) 0.0155 (3)
H12A 0.7127 1.0419 0.0039 0.019*
H12B 0.8580 1.0384 0.0847 0.019*
C13A 0.99018 (13) 0.82077 (12) 0.31977 (12) 0.0166 (3)
H13A 0.9536 0.7569 0.3608 0.020*
H13B 0.9986 0.7887 0.2401 0.020*
C14A 1.12463 (13) 0.86198 (13) 0.39135 (12) 0.0199 (3)
H14A 1.1623 0.9216 0.3477 0.030*
H14B 1.1834 0.7934 0.4040 0.030*
H14C 1.1145 0.8974 0.4684 0.030*
S1B 0.75895 (3) 0.44991 (3) 0.30868 (3) 0.01604 (9)
O1B 0.96037 (9) 0.30177 (9) −0.00856 (8) 0.0195 (2)
C1B 0.86605 (12) 0.39287 (11) 0.20787 (11) 0.0134 (2)
C2B 0.92957 (13) 0.27433 (11) 0.25006 (11) 0.0155 (3)
H2B1 0.8590 0.2149 0.2513 0.019*
H2B2 0.9818 0.2439 0.1922 0.019*
C3B 1.01917 (14) 0.28581 (12) 0.37345 (11) 0.0181 (3)
H3B1 1.0607 0.2080 0.3936 0.022*
H3B2 0.9659 0.3077 0.4333 0.022*
C4B 1.12643 (14) 0.38092 (12) 0.37728 (12) 0.0198 (3)
H4B1 1.1803 0.3900 0.4588 0.024*
H4B2 1.1851 0.3552 0.3231 0.024*
C5B 1.06533 (13) 0.50073 (12) 0.34018 (12) 0.0171 (3)
H5B1 1.1364 0.5597 0.3390 0.020*
H5B2 1.0144 0.5303 0.3994 0.020*
C6B 0.97415 (13) 0.49000 (11) 0.21687 (11) 0.0153 (3)
H6B1 1.0276 0.4710 0.1565 0.018*
H6B2 0.9318 0.5679 0.1988 0.018*
C7B 0.78001 (12) 0.37651 (11) 0.08113 (11) 0.0137 (3)
H7B 0.7038 0.3242 0.0880 0.016*
C8B 0.84277 (13) 0.31733 (11) −0.01577 (11) 0.0157 (3)
C9B 0.74329 (14) 0.28622 (12) −0.12940 (12) 0.0189 (3)
H9B1 0.6784 0.2275 −0.1132 0.023*
H9B2 0.7891 0.2492 −0.1892 0.023*
C10B 0.67096 (13) 0.39844 (12) −0.17934 (12) 0.0181 (3)
H10C 0.7332 0.4512 −0.2084 0.022*
H10D 0.5991 0.3749 −0.2474 0.022*
C11B 0.61377 (13) 0.46594 (12) −0.08390 (12) 0.0167 (3)
H11C 0.5427 0.4173 −0.0628 0.020*
H11D 0.5749 0.5415 −0.1153 0.020*
C12B 0.72028 (13) 0.49357 (11) 0.02716 (12) 0.0155 (3)
H12C 0.6817 0.5397 0.0868 0.019*
H12D 0.7908 0.5430 0.0063 0.019*
C13B 0.65969 (14) 0.32216 (12) 0.32900 (12) 0.0196 (3)
H13C 0.6113 0.2890 0.2510 0.024*
H13D 0.7167 0.2591 0.3687 0.024*
C14B 0.56281 (15) 0.36372 (14) 0.40545 (14) 0.0266 (3)
H14D 0.6116 0.3972 0.4820 0.040*
H14E 0.5088 0.2957 0.4188 0.040*
H14F 0.5057 0.4250 0.3647 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.01464 (16) 0.01284 (16) 0.01680 (16) 0.00131 (12) 0.00018 (12) −0.00173 (12)
O1A 0.0168 (5) 0.0218 (5) 0.0189 (5) −0.0030 (4) 0.0018 (4) 0.0022 (4)
C1A 0.0126 (6) 0.0127 (6) 0.0129 (6) 0.0011 (5) 0.0008 (5) 0.0005 (5)
C2A 0.0170 (6) 0.0128 (6) 0.0156 (6) 0.0005 (5) 0.0029 (5) 0.0005 (5)
C3A 0.0226 (7) 0.0164 (7) 0.0162 (6) −0.0002 (5) 0.0050 (5) 0.0020 (5)
C4A 0.0203 (7) 0.0219 (7) 0.0175 (7) 0.0018 (5) 0.0070 (5) 0.0008 (5)
C5A 0.0163 (6) 0.0177 (7) 0.0172 (6) 0.0035 (5) 0.0029 (5) −0.0024 (5)
C6A 0.0156 (6) 0.0135 (6) 0.0168 (6) 0.0017 (5) 0.0026 (5) 0.0008 (5)
C7A 0.0126 (6) 0.0119 (6) 0.0149 (6) 0.0008 (5) 0.0024 (5) 0.0004 (5)
C8A 0.0189 (7) 0.0112 (6) 0.0153 (6) −0.0001 (5) 0.0014 (5) 0.0028 (5)
C9A 0.0212 (7) 0.0196 (7) 0.0148 (6) −0.0035 (5) 0.0023 (5) −0.0020 (5)
C10A 0.0183 (7) 0.0191 (7) 0.0155 (6) 0.0004 (5) 0.0033 (5) 0.0024 (5)
C11A 0.0162 (6) 0.0155 (6) 0.0177 (6) −0.0002 (5) 0.0052 (5) 0.0021 (5)
C12A 0.0164 (6) 0.0130 (6) 0.0174 (6) −0.0002 (5) 0.0040 (5) 0.0008 (5)
C13A 0.0161 (6) 0.0156 (6) 0.0171 (6) 0.0033 (5) 0.0012 (5) 0.0000 (5)
C14A 0.0169 (7) 0.0240 (7) 0.0180 (7) 0.0032 (5) 0.0018 (5) −0.0006 (5)
S1B 0.02009 (17) 0.01311 (16) 0.01656 (17) −0.00010 (12) 0.00800 (13) −0.00127 (12)
O1B 0.0182 (5) 0.0221 (5) 0.0192 (5) 0.0057 (4) 0.0060 (4) 0.0018 (4)
C1B 0.0152 (6) 0.0118 (6) 0.0137 (6) 0.0008 (5) 0.0047 (5) −0.0004 (5)
C2B 0.0192 (6) 0.0124 (6) 0.0151 (6) 0.0011 (5) 0.0038 (5) 0.0001 (5)
C3B 0.0235 (7) 0.0156 (7) 0.0143 (6) 0.0038 (5) 0.0018 (5) 0.0014 (5)
C4B 0.0202 (7) 0.0211 (7) 0.0168 (6) 0.0026 (5) 0.0011 (5) −0.0012 (5)
C5B 0.0183 (7) 0.0156 (6) 0.0168 (6) −0.0022 (5) 0.0031 (5) −0.0021 (5)
C6B 0.0174 (6) 0.0128 (6) 0.0162 (6) −0.0008 (5) 0.0046 (5) 0.0006 (5)
C7B 0.0151 (6) 0.0118 (6) 0.0147 (6) 0.0006 (5) 0.0040 (5) 0.0002 (5)
C8B 0.0192 (7) 0.0118 (6) 0.0168 (6) 0.0032 (5) 0.0054 (5) 0.0017 (5)
C9B 0.0210 (7) 0.0203 (7) 0.0151 (6) 0.0044 (5) 0.0037 (5) −0.0028 (5)
C10B 0.0187 (7) 0.0207 (7) 0.0145 (6) 0.0010 (5) 0.0023 (5) 0.0022 (5)
C11B 0.0158 (6) 0.0154 (6) 0.0184 (6) 0.0018 (5) 0.0018 (5) 0.0025 (5)
C12B 0.0165 (6) 0.0122 (6) 0.0178 (6) 0.0020 (5) 0.0034 (5) 0.0010 (5)
C13B 0.0213 (7) 0.0183 (7) 0.0210 (7) −0.0022 (5) 0.0083 (6) 0.0015 (5)
C14B 0.0274 (8) 0.0280 (8) 0.0282 (8) −0.0014 (6) 0.0146 (6) 0.0004 (6)

Geometric parameters (Å, °)

S1A—C13A 1.8130 (13) S1B—C13B 1.8113 (14)
S1A—C1A 1.8577 (13) S1B—C1B 1.8571 (13)
O1A—C8A 1.2189 (16) O1B—C8B 1.2186 (16)
C1A—C2A 1.5399 (17) C1B—C2B 1.5392 (17)
C1A—C6A 1.5440 (17) C1B—C6B 1.5444 (17)
C1A—C7A 1.5504 (17) C1B—C7B 1.5490 (17)
C2A—C3A 1.5281 (17) C2B—C3B 1.5295 (18)
C2A—H2A1 0.9900 C2B—H2B1 0.9900
C2A—H2A2 0.9900 C2B—H2B2 0.9900
C3A—C4A 1.5324 (19) C3B—C4B 1.5303 (19)
C3A—H3A1 0.9900 C3B—H3B1 0.9900
C3A—H3A2 0.9900 C3B—H3B2 0.9900
C4A—C5A 1.5293 (19) C4B—C5B 1.5279 (19)
C4A—H4A1 0.9900 C4B—H4B1 0.9900
C4A—H4A2 0.9900 C4B—H4B2 0.9900
C5A—C6A 1.5323 (18) C5B—C6B 1.5354 (18)
C5A—H5A1 0.9900 C5B—H5B1 0.9900
C5A—H5A2 0.9900 C5B—H5B2 0.9900
C6A—H6A1 0.9900 C6B—H6B1 0.9900
C6A—H6A2 0.9900 C6B—H6B2 0.9900
C7A—C8A 1.5265 (17) C7B—C8B 1.5290 (17)
C7A—C12A 1.5507 (17) C7B—C12B 1.5535 (17)
C7A—H7A 1.0000 C7B—H7B 1.0000
C8A—C9A 1.5179 (18) C8B—C9B 1.5168 (18)
C9A—C10A 1.5387 (18) C9B—C10B 1.5398 (18)
C9A—H9A1 0.9900 C9B—H9B1 0.9900
C9A—H9A2 0.9900 C9B—H9B2 0.9900
C10A—C11A 1.5221 (18) C10B—C11B 1.5242 (18)
C10A—H10A 0.9900 C10B—H10C 0.9900
C10A—H10B 0.9900 C10B—H10D 0.9900
C11A—C12A 1.5262 (17) C11B—C12B 1.5278 (18)
C11A—H11A 0.9900 C11B—H11C 0.9900
C11A—H11B 0.9900 C11B—H11D 0.9900
C12A—H12A 0.9900 C12B—H12C 0.9900
C12A—H12B 0.9900 C12B—H12D 0.9900
C13A—C14A 1.5256 (19) C13B—C14B 1.5249 (19)
C13A—H13A 0.9900 C13B—H13C 0.9900
C13A—H13B 0.9900 C13B—H13D 0.9900
C14A—H14A 0.9800 C14B—H14D 0.9800
C14A—H14B 0.9800 C14B—H14E 0.9800
C14A—H14C 0.9800 C14B—H14F 0.9800
C13A—S1A—C1A 104.36 (6) C13B—S1B—C1B 104.78 (6)
C2A—C1A—C6A 109.67 (10) C2B—C1B—C6B 109.61 (10)
C2A—C1A—C7A 111.20 (10) C2B—C1B—C7B 111.00 (10)
C6A—C1A—C7A 112.51 (10) C6B—C1B—C7B 112.67 (10)
C2A—C1A—S1A 110.62 (8) C2B—C1B—S1B 110.81 (8)
C6A—C1A—S1A 104.83 (8) C6B—C1B—S1B 104.68 (8)
C7A—C1A—S1A 107.81 (8) C7B—C1B—S1B 107.89 (8)
C3A—C2A—C1A 113.55 (10) C3B—C2B—C1B 113.36 (10)
C3A—C2A—H2A1 108.9 C3B—C2B—H2B1 108.9
C1A—C2A—H2A1 108.9 C1B—C2B—H2B1 108.9
C3A—C2A—H2A2 108.9 C3B—C2B—H2B2 108.9
C1A—C2A—H2A2 108.9 C1B—C2B—H2B2 108.9
H2A1—C2A—H2A2 107.7 H2B1—C2B—H2B2 107.7
C2A—C3A—C4A 110.79 (11) C2B—C3B—C4B 110.77 (11)
C2A—C3A—H3A1 109.5 C2B—C3B—H3B1 109.5
C4A—C3A—H3A1 109.5 C4B—C3B—H3B1 109.5
C2A—C3A—H3A2 109.5 C2B—C3B—H3B2 109.5
C4A—C3A—H3A2 109.5 C4B—C3B—H3B2 109.5
H3A1—C3A—H3A2 108.1 H3B1—C3B—H3B2 108.1
C5A—C4A—C3A 110.49 (11) C5B—C4B—C3B 110.68 (11)
C5A—C4A—H4A1 109.6 C5B—C4B—H4B1 109.5
C3A—C4A—H4A1 109.6 C3B—C4B—H4B1 109.5
C5A—C4A—H4A2 109.6 C5B—C4B—H4B2 109.5
C3A—C4A—H4A2 109.6 C3B—C4B—H4B2 109.5
H4A1—C4A—H4A2 108.1 H4B1—C4B—H4B2 108.1
C4A—C5A—C6A 111.50 (11) C4B—C5B—C6B 111.64 (11)
C4A—C5A—H5A1 109.3 C4B—C5B—H5B1 109.3
C6A—C5A—H5A1 109.3 C6B—C5B—H5B1 109.3
C4A—C5A—H5A2 109.3 C4B—C5B—H5B2 109.3
C6A—C5A—H5A2 109.3 C6B—C5B—H5B2 109.3
H5A1—C5A—H5A2 108.0 H5B1—C5B—H5B2 108.0
C5A—C6A—C1A 113.11 (10) C5B—C6B—C1B 112.80 (10)
C5A—C6A—H6A1 109.0 C5B—C6B—H6B1 109.0
C1A—C6A—H6A1 109.0 C1B—C6B—H6B1 109.0
C5A—C6A—H6A2 109.0 C5B—C6B—H6B2 109.0
C1A—C6A—H6A2 109.0 C1B—C6B—H6B2 109.0
H6A1—C6A—H6A2 107.8 H6B1—C6B—H6B2 107.8
C8A—C7A—C1A 118.12 (10) C8B—C7B—C1B 117.75 (10)
C8A—C7A—C12A 104.50 (10) C8B—C7B—C12B 104.56 (10)
C1A—C7A—C12A 114.47 (10) C1B—C7B—C12B 114.68 (10)
C8A—C7A—H7A 106.3 C8B—C7B—H7B 106.4
C1A—C7A—H7A 106.3 C1B—C7B—H7B 106.4
C12A—C7A—H7A 106.3 C12B—C7B—H7B 106.4
O1A—C8A—C9A 121.75 (12) O1B—C8B—C9B 121.68 (12)
O1A—C8A—C7A 125.31 (12) O1B—C8B—C7B 125.40 (12)
C9A—C8A—C7A 112.83 (11) C9B—C8B—C7B 112.78 (11)
C8A—C9A—C10A 110.85 (11) C8B—C9B—C10B 110.92 (11)
C8A—C9A—H9A1 109.5 C8B—C9B—H9B1 109.5
C10A—C9A—H9A1 109.5 C10B—C9B—H9B1 109.5
C8A—C9A—H9A2 109.5 C8B—C9B—H9B2 109.5
C10A—C9A—H9A2 109.5 C10B—C9B—H9B2 109.5
H9A1—C9A—H9A2 108.1 H9B1—C9B—H9B2 108.0
C11A—C10A—C9A 110.79 (11) C11B—C10B—C9B 110.61 (11)
C11A—C10A—H10A 109.5 C11B—C10B—H10C 109.5
C9A—C10A—H10A 109.5 C9B—C10B—H10C 109.5
C11A—C10A—H10B 109.5 C11B—C10B—H10D 109.5
C9A—C10A—H10B 109.5 C9B—C10B—H10D 109.5
H10A—C10A—H10B 108.1 H10C—C10B—H10D 108.1
C10A—C11A—C12A 110.75 (11) C10B—C11B—C12B 110.84 (11)
C10A—C11A—H11A 109.5 C10B—C11B—H11C 109.5
C12A—C11A—H11A 109.5 C12B—C11B—H11C 109.5
C10A—C11A—H11B 109.5 C10B—C11B—H11D 109.5
C12A—C11A—H11B 109.5 C12B—C11B—H11D 109.5
H11A—C11A—H11B 108.1 H11C—C11B—H11D 108.1
C11A—C12A—C7A 110.79 (10) C11B—C12B—C7B 110.76 (10)
C11A—C12A—H12A 109.5 C11B—C12B—H12C 109.5
C7A—C12A—H12A 109.5 C7B—C12B—H12C 109.5
C11A—C12A—H12B 109.5 C11B—C12B—H12D 109.5
C7A—C12A—H12B 109.5 C7B—C12B—H12D 109.5
H12A—C12A—H12B 108.1 H12C—C12B—H12D 108.1
C14A—C13A—S1A 107.95 (9) C14B—C13B—S1B 107.97 (10)
C14A—C13A—H13A 110.1 C14B—C13B—H13C 110.1
S1A—C13A—H13A 110.1 S1B—C13B—H13C 110.1
C14A—C13A—H13B 110.1 C14B—C13B—H13D 110.1
S1A—C13A—H13B 110.1 S1B—C13B—H13D 110.1
H13A—C13A—H13B 108.4 H13C—C13B—H13D 108.4
C13A—C14A—H14A 109.5 C13B—C14B—H14D 109.5
C13A—C14A—H14B 109.5 C13B—C14B—H14E 109.5
H14A—C14A—H14B 109.5 H14D—C14B—H14E 109.5
C13A—C14A—H14C 109.5 C13B—C14B—H14F 109.5
H14A—C14A—H14C 109.5 H14D—C14B—H14F 109.5
H14B—C14A—H14C 109.5 H14E—C14B—H14F 109.5
C13A—S1A—C1A—C2A 49.82 (10) C13B—S1B—C1B—C2B −47.41 (10)
C13A—S1A—C1A—C6A 167.97 (8) C13B—S1B—C1B—C6B −165.49 (8)
C13A—S1A—C1A—C7A −71.97 (9) C13B—S1B—C1B—C7B 74.30 (10)
C6A—C1A—C2A—C3A −52.42 (14) C6B—C1B—C2B—C3B 53.18 (14)
C7A—C1A—C2A—C3A −177.51 (11) C7B—C1B—C2B—C3B 178.28 (11)
S1A—C1A—C2A—C3A 62.73 (12) S1B—C1B—C2B—C3B −61.86 (13)
C1A—C2A—C3A—C4A 55.83 (15) C1B—C2B—C3B—C4B −56.10 (14)
C2A—C3A—C4A—C5A −56.44 (15) C2B—C3B—C4B—C5B 56.19 (14)
C3A—C4A—C5A—C6A 56.25 (14) C3B—C4B—C5B—C6B −55.90 (15)
C4A—C5A—C6A—C1A −54.81 (15) C4B—C5B—C6B—C1B 54.72 (15)
C2A—C1A—C6A—C5A 51.57 (14) C2B—C1B—C6B—C5B −52.08 (14)
C7A—C1A—C6A—C5A 175.90 (10) C7B—C1B—C6B—C5B −176.21 (10)
S1A—C1A—C6A—C5A −67.21 (12) S1B—C1B—C6B—C5B 66.82 (12)
C2A—C1A—C7A—C8A 51.95 (15) C2B—C1B—C7B—C8B −51.91 (14)
C6A—C1A—C7A—C8A −71.53 (14) C6B—C1B—C7B—C8B 71.45 (14)
S1A—C1A—C7A—C8A 173.37 (9) S1B—C1B—C7B—C8B −173.49 (9)
C2A—C1A—C7A—C12A 175.66 (10) C2B—C1B—C7B—C12B −175.58 (10)
C6A—C1A—C7A—C12A 52.18 (14) C6B—C1B—C7B—C12B −52.22 (14)
S1A—C1A—C7A—C12A −62.92 (12) S1B—C1B—C7B—C12B 62.84 (12)
C1A—C7A—C8A—O1A 14.12 (19) C1B—C7B—C8B—O1B −14.47 (19)
C12A—C7A—C8A—O1A −114.43 (14) C12B—C7B—C8B—O1B 114.15 (14)
C1A—C7A—C8A—C9A −169.72 (11) C1B—C7B—C8B—C9B 169.73 (11)
C12A—C7A—C8A—C9A 61.73 (13) C12B—C7B—C8B—C9B −61.65 (13)
O1A—C8A—C9A—C10A 118.09 (13) O1B—C8B—C9B—C10B −117.53 (14)
C7A—C8A—C9A—C10A −58.22 (14) C7B—C8B—C9B—C10B 58.46 (14)
C8A—C9A—C10A—C11A 51.80 (15) C8B—C9B—C10B—C11B −52.11 (15)
C9A—C10A—C11A—C12A −53.81 (14) C9B—C10B—C11B—C12B 53.95 (14)
C10A—C11A—C12A—C7A 61.17 (14) C10B—C11B—C12B—C7B −61.06 (14)
C8A—C7A—C12A—C11A −62.58 (13) C8B—C7B—C12B—C11B 62.32 (13)
C1A—C7A—C12A—C11A 166.68 (10) C1B—C7B—C12B—C11B −167.23 (10)
C1A—S1A—C13A—C14A 174.74 (9) C1B—S1B—C13B—C14B −176.72 (10)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2746).

References

  1. Bach, R. D. & Klix, R. C. (1985). J. Org. Chem.50, 5440–5441.
  2. Ito, Y., Fujii, S., Nakatuska, M., Kawamoto, F. & Saegusa, T. (1979). Org. Synth.59, 113–121.
  3. Kumar, V. & Dev, S. (1983). Tetrahedron Lett.24, 1289–1292.
  4. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  5. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  6. Reetz, M. T. & Giannis, A. (1981). Synth. Commun.11, 315–322.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Trost, B. M., Salzmann, T. N. & Hirori, K. (1976). J. Am. Chem. Soc.98, 4887–4902.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810010731/ng2746sup1.cif

e-66-0o932-sup1.cif (26.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010731/ng2746Isup2.hkl

e-66-0o932-Isup2.hkl (293KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES