Abstract
The asymmetric unit of the title salt, C5H6ClN2 +·C2F3O2 −, contains two independent 2-amino-5-chloropyridinium cations and two independent trifluoroacetate anions. The F atoms of both anions are disordered over two sets of positions, with occupancy ratios of 0.672 (12):0.328 (12) and 0.587 (15):0.413 (15). In the crystal, the cations and anions are linked via N—H⋯O and C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (001).
Related literature
For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997 ▶); Katritzky et al. (1996 ▶). For related structures, see: Pourayoubi et al. (2007 ▶); Hemamalini & Fun (2010a
▶,b
▶,c
▶). For details of hydrogen bonding, see: Jeffrey & Saenger (1991 ▶); Jeffrey (1997 ▶); Scheiner (1997 ▶). For hydrogen-bond motifs, see: Bernstein et al. (1995 ▶). For bond-length data, see: Allen et al. (1987 ▶).
Experimental
Crystal data
C5H6ClN2 +·C2F3O2 −
M r = 242.59
Monoclinic,
a = 5.0377 (1) Å
b = 11.2923 (2) Å
c = 17.5386 (3) Å
β = 90.001 (1)°
V = 997.72 (3) Å3
Z = 4
Mo Kα radiation
μ = 0.41 mm−1
T = 296 K
0.43 × 0.26 × 0.14 mm
Data collection
Bruker SMART APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009 ▶) T min = 0.842, T max = 0.945
17652 measured reflections
4388 independent reflections
3191 reflections with I > 2σ(I)
R int = 0.027
Refinement
R[F 2 > 2σ(F 2)] = 0.036
wR(F 2) = 0.094
S = 1.03
4388 reflections
375 parameters
110 restraints
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.12 e Å−3
Δρmin = −0.15 e Å−3
Absolute structure: Flack (1983 ▶), 2096 Friedel pairs
Flack parameter: 0.01 (7)
Data collection: APEX2 (Bruker, 2009 ▶); cell refinement: SAINT (Bruker, 2009 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008196/ci5043sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008196/ci5043Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1A—H1NA⋯O1Ai | 0.94 (3) | 1.79 (3) | 2.727 (3) | 173 (3) |
| N2A—H2NA⋯O2Ai | 0.90 (3) | 1.95 (3) | 2.840 (4) | 175 (3) |
| N2A—H3NA⋯O1Bii | 0.87 (3) | 2.00 (2) | 2.863 (3) | 171 (4) |
| N1B—H1NB⋯O1Biii | 0.87 (3) | 1.87 (3) | 2.734 (3) | 175 (3) |
| N2B—H2NB⋯O2Biii | 0.90 (2) | 1.94 (2) | 2.838 (4) | 170 (2) |
| N2B—H3NB⋯O1A | 0.87 (3) | 1.99 (2) | 2.861 (3) | 175 (4) |
| C5A—H5AA⋯O2Bi | 0.97 (3) | 2.29 (3) | 3.210 (4) | 158 (3) |
| C5B—H5BA⋯O2Aiv | 0.96 (3) | 2.31 (3) | 3.208 (3) | 157 (3) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Acknowledgments
MH and HKF thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks USM for a post-doctoral research fellowship.
supplementary crystallographic information
Comment
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). We have recently reported the crystal structures of 2-amino-5-chloropyridinium 4-hydroxybenzoate (Hemamalini & Fun, 2010a), 2-amino-5-chloropyridine benzoic acid (Hemamalini & Fun, 2010b) and 2-amino-5-chloropyridinium hydrogen succinate. (Hemamalini & Fun, 2010c). In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.
The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-chloropyridinium cations (A and B) and two trifluoroacetate anions (A and B) (Fig. 1). Each 2-amino-5-chloropyridinium cation is planar, with a maximum deviation of 0.017 (3) Å for atom C3A in cation A and 0.026 (1) Å for atom C1B in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C1A–N1A–C5A [122.7 (3)°] and C1B—N1B—C5B [123.2 (3)°] angles compared to those observed in an unprotonated structure (Pourayoubi et al., 2007). Bond lengths and angles are normal (Allen et al., 1987).
In the crystal packing (Fig. 2), the A/B type 2-amino-5-chloropyridinium cations interact with the carboxylate groups of the A/B type trifluoroacetate anions through a pair of N—H···O hydrogen bonds, forming an R22(8) (Bernstein et al., 1995) ring motif. The packing is further stabilized by weak C5A—H5AA···O2B and C5B—H5BA···O2A (Table 1) hydrogen bonds.
Experimental
To a hot methanol solution (20 ml) of 2-amino-5-chloropyridine (27 mg, Aldrich) was added a few drops of trifluoroacetic acid. The solution was warmed over a water bath for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Crystals of the title compound appeared after a few days.
Refinement
All H atoms were located in a difference Fourier map and refined [N—H =0.87 (2)–0.94 (3) Å and C—H =0.94 (4)–0.98 (4) Å]; the N–H distances of the NH2 groups were restrained to be equal. The F atoms of both anions are disordered over two positions, with site occupancies of 0.672 (12) and 0.328 (12) in one of the anions, and 0.587 (15):0.413 (15) in the other anion. In each anion, the C—F distances were restrained to be equal and the Uij components of F atoms were restrained to an approximate isotropic behaviour.
Figures
Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. All disorder components are shown.
Fig. 2.
The crystal packing of the title compound, showing the hydrogen-bonded (dashed lines) networks.
Crystal data
| C5H6ClN2+·C2F3O2− | F(000) = 488 |
| Mr = 242.59 | Dx = 1.615 Mg m−3 |
| Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: P -2yc | Cell parameters from 6764 reflections |
| a = 5.0377 (1) Å | θ = 2.9–23.0° |
| b = 11.2923 (2) Å | µ = 0.41 mm−1 |
| c = 17.5386 (3) Å | T = 296 K |
| β = 90.001 (1)° | Blcok, colourless |
| V = 997.72 (3) Å3 | 0.43 × 0.26 × 0.14 mm |
| Z = 4 |
Data collection
| Bruker SMART APEXII CCD area-detector diffractometer | 4388 independent reflections |
| Radiation source: fine-focus sealed tube | 3191 reflections with I > 2σ(I) |
| graphite | Rint = 0.027 |
| φ and ω scans | θmax = 27.5°, θmin = 1.8° |
| Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −6→6 |
| Tmin = 0.842, Tmax = 0.945 | k = −14→14 |
| 17652 measured reflections | l = −22→22 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.0449P)2 + 0.0781P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.03 | (Δ/σ)max = 0.001 |
| 4388 reflections | Δρmax = 0.12 e Å−3 |
| 375 parameters | Δρmin = −0.15 e Å−3 |
| 110 restraints | Absolute structure: Flack (1983), 2096 Friedel pairs |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.01 (7) |
Special details
| Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Cl1A | 1.1299 (2) | 0.65347 (8) | 0.53508 (6) | 0.0863 (3) | |
| N1A | 0.6452 (5) | 0.84270 (19) | 0.40858 (15) | 0.0509 (6) | |
| N2A | 0.5936 (6) | 1.0402 (2) | 0.38078 (18) | 0.0688 (7) | |
| C1A | 0.7219 (6) | 0.9568 (2) | 0.41821 (16) | 0.0535 (7) | |
| C2A | 0.9320 (6) | 0.9791 (3) | 0.46873 (17) | 0.0620 (7) | |
| C3A | 1.0548 (7) | 0.8880 (3) | 0.50499 (18) | 0.0657 (8) | |
| C4A | 0.9711 (6) | 0.7707 (2) | 0.49139 (16) | 0.0598 (7) | |
| C5A | 0.7678 (6) | 0.7505 (3) | 0.44427 (18) | 0.0547 (7) | |
| Cl1B | 0.6300 (2) | 0.84657 (8) | 0.66202 (6) | 0.0862 (3) | |
| N1B | 0.1456 (5) | 0.65696 (18) | 0.78845 (16) | 0.0515 (6) | |
| N2B | 0.0936 (6) | 0.4597 (2) | 0.81654 (19) | 0.0696 (7) | |
| C1B | 0.2208 (6) | 0.5431 (2) | 0.77885 (16) | 0.0536 (7) | |
| C2B | 0.4312 (6) | 0.5216 (3) | 0.72826 (17) | 0.0622 (7) | |
| C3B | 0.5552 (7) | 0.6116 (3) | 0.69219 (18) | 0.0647 (8) | |
| C4B | 0.4720 (6) | 0.7291 (2) | 0.70553 (16) | 0.0592 (7) | |
| C5B | 0.2675 (6) | 0.7496 (2) | 0.75301 (17) | 0.0543 (7) | |
| F1A | 0.1120 (15) | 0.2688 (5) | 0.6659 (3) | 0.103 (2) | 0.672 (12) |
| F2A | −0.2319 (10) | 0.2039 (11) | 0.7180 (3) | 0.145 (3) | 0.672 (12) |
| F3A | −0.002 (2) | 0.0953 (5) | 0.6438 (3) | 0.133 (3) | 0.672 (12) |
| F1C | −0.050 (4) | 0.2829 (7) | 0.6917 (10) | 0.120 (5) | 0.328 (12) |
| F2C | −0.217 (2) | 0.1179 (12) | 0.6924 (8) | 0.113 (4) | 0.328 (12) |
| F3C | 0.135 (3) | 0.1402 (18) | 0.6367 (6) | 0.143 (6) | 0.328 (12) |
| O1A | 0.2546 (5) | 0.21708 (17) | 0.80805 (12) | 0.0645 (5) | |
| O2A | 0.1855 (6) | 0.0286 (2) | 0.77827 (16) | 0.0847 (7) | |
| C6A | 0.1664 (6) | 0.1353 (3) | 0.76755 (19) | 0.0562 (7) | |
| C7A | 0.0082 (7) | 0.1732 (3) | 0.69751 (19) | 0.0725 (9) | |
| F1B | 0.6266 (18) | 0.7635 (7) | 1.0334 (4) | 0.106 (2) | 0.587 (15) |
| F2B | 0.2762 (14) | 0.7160 (13) | 0.9780 (4) | 0.134 (3) | 0.587 (15) |
| F3B | 0.473 (3) | 0.5940 (5) | 1.0508 (5) | 0.129 (3) | 0.587 (15) |
| F1D | 0.490 (4) | 0.7839 (5) | 1.0133 (8) | 0.120 (4) | 0.413 (15) |
| F2D | 0.2692 (17) | 0.6301 (14) | 0.9986 (7) | 0.123 (4) | 0.413 (15) |
| F3D | 0.615 (3) | 0.6227 (14) | 1.0603 (5) | 0.134 (4) | 0.413 (15) |
| O1B | 0.7544 (5) | 0.71703 (17) | 0.88936 (12) | 0.0642 (5) | |
| O2B | 0.6855 (6) | 0.5286 (2) | 0.91889 (15) | 0.0840 (7) | |
| C6B | 0.6665 (6) | 0.6354 (3) | 0.92942 (19) | 0.0560 (7) | |
| C7B | 0.5093 (7) | 0.6735 (3) | 0.99991 (19) | 0.0718 (9) | |
| H1NA | 0.507 (7) | 0.829 (3) | 0.3734 (17) | 0.059 (8)* | |
| H2NA | 0.470 (6) | 1.021 (3) | 0.3463 (17) | 0.073 (10)* | |
| H3NA | 0.652 (7) | 1.112 (2) | 0.388 (2) | 0.071 (10)* | |
| H2AA | 0.998 (8) | 1.056 (4) | 0.477 (2) | 0.081 (10)* | |
| H3AA | 1.194 (7) | 0.905 (3) | 0.543 (2) | 0.073 (10)* | |
| H5AA | 0.694 (6) | 0.673 (3) | 0.4342 (16) | 0.050 (7)* | |
| H1NB | 0.023 (7) | 0.672 (3) | 0.8221 (18) | 0.059 (9)* | |
| H2NB | −0.023 (5) | 0.479 (2) | 0.8537 (14) | 0.057 (8)* | |
| H3NB | 0.143 (8) | 0.386 (2) | 0.811 (2) | 0.079 (11)* | |
| H2BA | 0.494 (7) | 0.448 (3) | 0.719 (2) | 0.077 (10)* | |
| H3BA | 0.701 (8) | 0.598 (4) | 0.656 (2) | 0.081 (11)* | |
| H5BA | 0.192 (7) | 0.826 (3) | 0.7621 (19) | 0.065 (9)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1A | 0.0909 (6) | 0.0709 (6) | 0.0971 (6) | 0.0149 (5) | −0.0160 (5) | 0.0077 (5) |
| N1A | 0.0552 (15) | 0.0349 (13) | 0.0625 (15) | −0.0015 (9) | −0.0004 (12) | −0.0045 (10) |
| N2A | 0.082 (2) | 0.0340 (13) | 0.0903 (19) | −0.0087 (13) | −0.0106 (16) | 0.0013 (13) |
| C1A | 0.0606 (17) | 0.0382 (15) | 0.0618 (17) | −0.0065 (12) | 0.0072 (14) | −0.0057 (12) |
| C2A | 0.0690 (19) | 0.0444 (15) | 0.0727 (18) | −0.0111 (14) | 0.0036 (15) | −0.0073 (13) |
| C3A | 0.065 (2) | 0.067 (2) | 0.0655 (19) | −0.0096 (16) | −0.0006 (16) | −0.0126 (15) |
| C4A | 0.0682 (19) | 0.0514 (15) | 0.0597 (15) | 0.0034 (14) | 0.0031 (14) | −0.0035 (12) |
| C5A | 0.0636 (19) | 0.0372 (14) | 0.0634 (16) | −0.0017 (13) | 0.0059 (14) | −0.0033 (12) |
| Cl1B | 0.0915 (6) | 0.0693 (6) | 0.0976 (6) | −0.0155 (5) | 0.0171 (5) | 0.0067 (5) |
| N1B | 0.0584 (16) | 0.0329 (13) | 0.0632 (16) | 0.0015 (10) | 0.0008 (12) | −0.0044 (10) |
| N2B | 0.084 (2) | 0.0342 (13) | 0.0906 (19) | 0.0067 (13) | 0.0139 (16) | 0.0000 (13) |
| C1B | 0.0582 (17) | 0.0381 (16) | 0.0644 (18) | 0.0067 (12) | −0.0075 (14) | −0.0054 (12) |
| C2B | 0.0684 (19) | 0.0443 (15) | 0.0737 (18) | 0.0119 (14) | −0.0043 (15) | −0.0100 (13) |
| C3B | 0.067 (2) | 0.0648 (19) | 0.0627 (18) | 0.0089 (16) | 0.0010 (16) | −0.0096 (15) |
| C4B | 0.0669 (18) | 0.0516 (15) | 0.0592 (15) | −0.0050 (14) | −0.0034 (14) | −0.0023 (12) |
| C5B | 0.0641 (19) | 0.0370 (14) | 0.0617 (16) | 0.0009 (13) | −0.0068 (14) | −0.0045 (12) |
| F1A | 0.137 (5) | 0.087 (3) | 0.085 (3) | −0.028 (3) | −0.016 (2) | 0.036 (2) |
| F2A | 0.079 (3) | 0.232 (8) | 0.126 (4) | 0.045 (4) | −0.002 (2) | 0.037 (5) |
| F3A | 0.211 (7) | 0.091 (3) | 0.096 (3) | −0.004 (3) | −0.049 (4) | −0.036 (2) |
| F1C | 0.159 (10) | 0.061 (4) | 0.141 (8) | 0.016 (6) | −0.064 (7) | −0.002 (5) |
| F2C | 0.088 (6) | 0.104 (7) | 0.147 (8) | −0.016 (5) | −0.041 (5) | 0.011 (6) |
| F3C | 0.148 (9) | 0.204 (11) | 0.078 (6) | −0.006 (7) | 0.005 (6) | −0.007 (7) |
| O1A | 0.0824 (15) | 0.0373 (11) | 0.0737 (13) | 0.0111 (9) | −0.0104 (11) | −0.0062 (9) |
| O2A | 0.1066 (19) | 0.0374 (13) | 0.110 (2) | 0.0061 (12) | −0.0211 (15) | −0.0014 (12) |
| C6A | 0.0601 (18) | 0.0410 (16) | 0.0676 (18) | 0.0045 (13) | 0.0056 (13) | −0.0019 (13) |
| C7A | 0.089 (3) | 0.0580 (19) | 0.071 (2) | −0.0068 (18) | −0.0022 (18) | −0.0009 (15) |
| F1B | 0.122 (5) | 0.110 (5) | 0.085 (3) | −0.021 (3) | 0.008 (3) | −0.041 (3) |
| F2B | 0.086 (4) | 0.196 (8) | 0.122 (4) | 0.049 (5) | 0.006 (3) | −0.022 (5) |
| F3B | 0.188 (8) | 0.085 (3) | 0.116 (4) | −0.012 (4) | 0.061 (5) | 0.028 (3) |
| F1D | 0.174 (9) | 0.052 (3) | 0.134 (7) | 0.006 (5) | 0.077 (7) | −0.007 (4) |
| F2D | 0.072 (4) | 0.141 (8) | 0.156 (7) | −0.012 (5) | 0.030 (4) | −0.026 (6) |
| F3D | 0.150 (8) | 0.184 (9) | 0.066 (4) | −0.001 (6) | 0.001 (5) | 0.033 (5) |
| O1B | 0.0833 (15) | 0.0377 (11) | 0.0715 (13) | 0.0099 (9) | 0.0124 (11) | 0.0067 (9) |
| O2B | 0.1067 (19) | 0.0370 (12) | 0.1083 (19) | 0.0034 (12) | 0.0226 (14) | 0.0008 (12) |
| C6B | 0.0605 (18) | 0.0381 (16) | 0.0696 (18) | 0.0039 (13) | −0.0061 (13) | 0.0001 (13) |
| C7B | 0.089 (3) | 0.0571 (19) | 0.070 (2) | −0.0047 (18) | 0.0054 (18) | 0.0018 (15) |
Geometric parameters (Å, °)
| Cl1A—C4A | 1.726 (3) | C2B—H2BA | 0.90 (4) |
| N1A—C1A | 1.355 (4) | C3B—C4B | 1.411 (5) |
| N1A—C5A | 1.362 (4) | C3B—H3BA | 0.98 (4) |
| N1A—H1NA | 0.94 (3) | C4B—C5B | 1.345 (4) |
| N2A—C1A | 1.317 (4) | C5B—H5BA | 0.95 (4) |
| N2A—H2NA | 0.90 (2) | F1A—C7A | 1.321 (4) |
| N2A—H3NA | 0.87 (2) | F2A—C7A | 1.308 (5) |
| C1A—C2A | 1.403 (4) | F3A—C7A | 1.290 (5) |
| C2A—C3A | 1.358 (5) | F1C—C7A | 1.276 (7) |
| C2A—H2AA | 0.94 (4) | F2C—C7A | 1.299 (7) |
| C3A—C4A | 1.411 (5) | F3C—C7A | 1.299 (7) |
| C3A—H3AA | 0.98 (4) | O1A—C6A | 1.247 (4) |
| C4A—C5A | 1.336 (4) | O2A—C6A | 1.223 (4) |
| C5A—H5AA | 0.97 (3) | C6A—C7A | 1.525 (5) |
| Cl1B—C4B | 1.725 (3) | F1B—C7B | 1.314 (5) |
| N1B—C1B | 1.351 (4) | F2B—C7B | 1.325 (5) |
| N1B—C5B | 1.363 (4) | F3B—C7B | 1.280 (5) |
| N1B—H1NB | 0.87 (3) | F1D—C7B | 1.272 (6) |
| N2B—C1B | 1.317 (4) | F2D—C7B | 1.306 (6) |
| N2B—H2NB | 0.902 (19) | F3D—C7B | 1.317 (7) |
| N2B—H3NB | 0.87 (2) | O1B—C6B | 1.240 (4) |
| C1B—C2B | 1.404 (4) | O2B—C6B | 1.224 (4) |
| C2B—C3B | 1.351 (5) | C6B—C7B | 1.530 (5) |
| C1A—N1A—C5A | 122.7 (3) | C2B—C3B—C4B | 119.5 (3) |
| C1A—N1A—H1NA | 116.9 (18) | C2B—C3B—H3BA | 122 (3) |
| C5A—N1A—H1NA | 120.4 (18) | C4B—C3B—H3BA | 119 (3) |
| C1A—N2A—H2NA | 120 (2) | C5B—C4B—C3B | 119.5 (3) |
| C1A—N2A—H3NA | 115 (3) | C5B—C4B—Cl1B | 119.7 (2) |
| H2NA—N2A—H3NA | 124 (3) | C3B—C4B—Cl1B | 120.8 (3) |
| N2A—C1A—N1A | 118.5 (3) | C4B—C5B—N1B | 119.7 (3) |
| N2A—C1A—C2A | 123.8 (3) | C4B—C5B—H5BA | 124 (2) |
| N1A—C1A—C2A | 117.7 (3) | N1B—C5B—H5BA | 116 (2) |
| C3A—C2A—C1A | 120.2 (3) | O2A—C6A—O1A | 127.9 (3) |
| C3A—C2A—H2AA | 118 (2) | O2A—C6A—C7A | 116.2 (3) |
| C1A—C2A—H2AA | 122 (2) | O1A—C6A—C7A | 115.9 (3) |
| C2A—C3A—C4A | 119.7 (3) | F1C—C7A—F3C | 109.0 (10) |
| C2A—C3A—H3AA | 120 (2) | F1C—C7A—F2C | 105.1 (8) |
| C4A—C3A—H3AA | 121 (2) | F3C—C7A—F2C | 103.6 (9) |
| C5A—C4A—C3A | 119.6 (3) | F3A—C7A—F2A | 110.2 (6) |
| C5A—C4A—Cl1A | 119.9 (2) | F3A—C7A—F1A | 105.4 (5) |
| C3A—C4A—Cl1A | 120.4 (3) | F2A—C7A—F1A | 105.4 (5) |
| C4A—C5A—N1A | 120.1 (3) | F3A—C7A—C6A | 114.6 (4) |
| C4A—C5A—H5AA | 124.3 (18) | F2A—C7A—C6A | 109.6 (3) |
| N1A—C5A—H5AA | 115.6 (18) | F1A—C7A—C6A | 111.1 (3) |
| C1B—N1B—C5B | 123.2 (3) | O2B—C6B—O1B | 128.2 (3) |
| C1B—N1B—H1NB | 118 (2) | O2B—C6B—C7B | 116.1 (3) |
| C5B—N1B—H1NB | 118 (2) | O1B—C6B—C7B | 115.7 (3) |
| C1B—N2B—H2NB | 120.5 (18) | F1D—C7B—F2D | 107.5 (7) |
| C1B—N2B—H3NB | 119 (3) | F3B—C7B—F1B | 107.1 (6) |
| H2NB—N2B—H3NB | 119 (3) | F1D—C7B—F3D | 108.0 (9) |
| N2B—C1B—N1B | 118.8 (3) | F2D—C7B—F3D | 103.0 (7) |
| N2B—C1B—C2B | 124.1 (3) | F3B—C7B—F2B | 109.3 (6) |
| N1B—C1B—C2B | 117.1 (3) | F1B—C7B—F2B | 104.3 (5) |
| C3B—C2B—C1B | 121.0 (3) | F3B—C7B—C6B | 116.1 (4) |
| C3B—C2B—H2BA | 117 (2) | F1B—C7B—C6B | 110.3 (4) |
| C1B—C2B—H2BA | 122 (2) | F2B—C7B—C6B | 109.0 (4) |
| C5A—N1A—C1A—N2A | 179.3 (3) | O2A—C6A—C7A—F3A | −24.8 (7) |
| C5A—N1A—C1A—C2A | −1.7 (4) | O1A—C6A—C7A—F3A | 157.0 (6) |
| N2A—C1A—C2A—C3A | −179.8 (3) | O2A—C6A—C7A—F3C | −66.6 (11) |
| N1A—C1A—C2A—C3A | 1.2 (4) | O1A—C6A—C7A—F3C | 115.3 (11) |
| C1A—C2A—C3A—C4A | 0.3 (5) | O2A—C6A—C7A—F2C | 47.5 (10) |
| C2A—C3A—C4A—C5A | −1.5 (5) | O1A—C6A—C7A—F2C | −130.6 (9) |
| C2A—C3A—C4A—Cl1A | 178.4 (2) | O2A—C6A—C7A—F2A | 99.7 (7) |
| C3A—C4A—C5A—N1A | 1.1 (4) | O1A—C6A—C7A—F2A | −78.4 (7) |
| Cl1A—C4A—C5A—N1A | −178.8 (2) | O2A—C6A—C7A—F1A | −144.2 (5) |
| C1A—N1A—C5A—C4A | 0.5 (4) | O1A—C6A—C7A—F1A | 37.6 (5) |
| C5B—N1B—C1B—N2B | 178.9 (3) | O2B—C6B—C7B—F1D | 178.7 (12) |
| C5B—N1B—C1B—C2B | −1.5 (4) | O1B—C6B—C7B—F1D | −2.6 (12) |
| N2B—C1B—C2B—C3B | −179.1 (3) | O2B—C6B—C7B—F3B | 17.6 (8) |
| N1B—C1B—C2B—C3B | 1.3 (4) | O1B—C6B—C7B—F3B | −163.7 (8) |
| C1B—C2B—C3B—C4B | 0.0 (5) | O2B—C6B—C7B—F2D | −56.8 (10) |
| C2B—C3B—C4B—C5B | −1.1 (5) | O1B—C6B—C7B—F2D | 121.9 (9) |
| C2B—C3B—C4B—Cl1B | 178.7 (3) | O2B—C6B—C7B—F1B | 139.6 (6) |
| C3B—C4B—C5B—N1B | 0.9 (4) | O1B—C6B—C7B—F1B | −41.6 (6) |
| Cl1B—C4B—C5B—N1B | −178.8 (2) | O2B—C6B—C7B—F3D | 55.7 (9) |
| C1B—N1B—C5B—C4B | 0.4 (4) | O1B—C6B—C7B—F3D | −125.6 (9) |
| O2A—C6A—C7A—F1C | 169.3 (13) | O2B—C6B—C7B—F2B | −106.4 (8) |
| O1A—C6A—C7A—F1C | −8.9 (13) | O1B—C6B—C7B—F2B | 72.4 (8) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1A—H1NA···O1Ai | 0.94 (3) | 1.79 (3) | 2.727 (3) | 173 (3) |
| N2A—H2NA···O2Ai | 0.90 (3) | 1.95 (3) | 2.840 (4) | 175 (3) |
| N2A—H3NA···O1Bii | 0.87 (3) | 2.00 (2) | 2.863 (3) | 171 (4) |
| N1B—H1NB···O1Biii | 0.87 (3) | 1.87 (3) | 2.734 (3) | 175 (3) |
| N2B—H2NB···O2Biii | 0.90 (2) | 1.94 (2) | 2.838 (4) | 170 (2) |
| N2B—H3NB···O1A | 0.87 (3) | 1.99 (2) | 2.861 (3) | 175 (4) |
| C5A—H5AA···O2Bi | 0.97 (3) | 2.29 (3) | 3.210 (4) | 158 (3) |
| C5B—H5BA···O2Aiv | 0.96 (3) | 2.31 (3) | 3.208 (3) | 157 (3) |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) x, −y+2, z−1/2; (iii) x−1, y, z; (iv) x, y+1, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5043).
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o557. [DOI] [PMC free article] [PubMed]
- Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o578. [DOI] [PMC free article] [PubMed]
- Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o464–o465. [DOI] [PMC free article] [PubMed]
- Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
- Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
- Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
- Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631. [DOI] [PMC free article] [PubMed]
- Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.
- Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008196/ci5043sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008196/ci5043Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


