Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 10;66(Pt 4):o783–o784. doi: 10.1107/S1600536810008196

2-Amino-5-chloro­pyridinium trifluoro­acetate

Madhukar Hemamalini a, Hoong-Kun Fun a,*,
PMCID: PMC2983973  PMID: 21580623

Abstract

The asymmetric unit of the title salt, C5H6ClN2 +·C2F3O2 , contains two independent 2-amino-5-chloro­pyridinium cations and two independent trifluoro­acetate anions. The F atoms of both anions are disordered over two sets of positions, with occupancy ratios of 0.672 (12):0.328 (12) and 0.587 (15):0.413 (15). In the crystal, the cations and anions are linked via N—H⋯O and C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (001).

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Pourayoubi et al. (2007); Hemamalini & Fun (2010a ,b ,c ). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).graphic file with name e-66-0o783-scheme1.jpg

Experimental

Crystal data

  • C5H6ClN2 +·C2F3O2

  • M r = 242.59

  • Monoclinic, Inline graphic

  • a = 5.0377 (1) Å

  • b = 11.2923 (2) Å

  • c = 17.5386 (3) Å

  • β = 90.001 (1)°

  • V = 997.72 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 296 K

  • 0.43 × 0.26 × 0.14 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.842, T max = 0.945

  • 17652 measured reflections

  • 4388 independent reflections

  • 3191 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.094

  • S = 1.03

  • 4388 reflections

  • 375 parameters

  • 110 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983), 2096 Friedel pairs

  • Flack parameter: 0.01 (7)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008196/ci5043sup1.cif

e-66-0o783-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008196/ci5043Isup2.hkl

e-66-0o783-Isup2.hkl (210.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O1Ai 0.94 (3) 1.79 (3) 2.727 (3) 173 (3)
N2A—H2NA⋯O2Ai 0.90 (3) 1.95 (3) 2.840 (4) 175 (3)
N2A—H3NA⋯O1Bii 0.87 (3) 2.00 (2) 2.863 (3) 171 (4)
N1B—H1NB⋯O1Biii 0.87 (3) 1.87 (3) 2.734 (3) 175 (3)
N2B—H2NB⋯O2Biii 0.90 (2) 1.94 (2) 2.838 (4) 170 (2)
N2B—H3NB⋯O1A 0.87 (3) 1.99 (2) 2.861 (3) 175 (4)
C5A—H5AA⋯O2Bi 0.97 (3) 2.29 (3) 3.210 (4) 158 (3)
C5B—H5BA⋯O2Aiv 0.96 (3) 2.31 (3) 3.208 (3) 157 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks USM for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). We have recently reported the crystal structures of 2-amino-5-chloropyridinium 4-hydroxybenzoate (Hemamalini & Fun, 2010a), 2-amino-5-chloropyridine benzoic acid (Hemamalini & Fun, 2010b) and 2-amino-5-chloropyridinium hydrogen succinate. (Hemamalini & Fun, 2010c). In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-chloropyridinium cations (A and B) and two trifluoroacetate anions (A and B) (Fig. 1). Each 2-amino-5-chloropyridinium cation is planar, with a maximum deviation of 0.017 (3) Å for atom C3A in cation A and 0.026 (1) Å for atom C1B in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C1A–N1A–C5A [122.7 (3)°] and C1B—N1B—C5B [123.2 (3)°] angles compared to those observed in an unprotonated structure (Pourayoubi et al., 2007). Bond lengths and angles are normal (Allen et al., 1987).

In the crystal packing (Fig. 2), the A/B type 2-amino-5-chloropyridinium cations interact with the carboxylate groups of the A/B type trifluoroacetate anions through a pair of N—H···O hydrogen bonds, forming an R22(8) (Bernstein et al., 1995) ring motif. The packing is further stabilized by weak C5A—H5AA···O2B and C5B—H5BA···O2A (Table 1) hydrogen bonds.

Experimental

To a hot methanol solution (20 ml) of 2-amino-5-chloropyridine (27 mg, Aldrich) was added a few drops of trifluoroacetic acid. The solution was warmed over a water bath for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Crystals of the title compound appeared after a few days.

Refinement

All H atoms were located in a difference Fourier map and refined [N—H =0.87 (2)–0.94 (3) Å and C—H =0.94 (4)–0.98 (4) Å]; the N–H distances of the NH2 groups were restrained to be equal. The F atoms of both anions are disordered over two positions, with site occupancies of 0.672 (12) and 0.328 (12) in one of the anions, and 0.587 (15):0.413 (15) in the other anion. In each anion, the C—F distances were restrained to be equal and the Uij components of F atoms were restrained to an approximate isotropic behaviour.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. All disorder components are shown.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing the hydrogen-bonded (dashed lines) networks.

Crystal data

C5H6ClN2+·C2F3O2 F(000) = 488
Mr = 242.59 Dx = 1.615 Mg m3
Monoclinic, Pc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yc Cell parameters from 6764 reflections
a = 5.0377 (1) Å θ = 2.9–23.0°
b = 11.2923 (2) Å µ = 0.41 mm1
c = 17.5386 (3) Å T = 296 K
β = 90.001 (1)° Blcok, colourless
V = 997.72 (3) Å3 0.43 × 0.26 × 0.14 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4388 independent reflections
Radiation source: fine-focus sealed tube 3191 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −6→6
Tmin = 0.842, Tmax = 0.945 k = −14→14
17652 measured reflections l = −22→22

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.0781P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
4388 reflections Δρmax = 0.12 e Å3
375 parameters Δρmin = −0.15 e Å3
110 restraints Absolute structure: Flack (1983), 2096 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.01 (7)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1A 1.1299 (2) 0.65347 (8) 0.53508 (6) 0.0863 (3)
N1A 0.6452 (5) 0.84270 (19) 0.40858 (15) 0.0509 (6)
N2A 0.5936 (6) 1.0402 (2) 0.38078 (18) 0.0688 (7)
C1A 0.7219 (6) 0.9568 (2) 0.41821 (16) 0.0535 (7)
C2A 0.9320 (6) 0.9791 (3) 0.46873 (17) 0.0620 (7)
C3A 1.0548 (7) 0.8880 (3) 0.50499 (18) 0.0657 (8)
C4A 0.9711 (6) 0.7707 (2) 0.49139 (16) 0.0598 (7)
C5A 0.7678 (6) 0.7505 (3) 0.44427 (18) 0.0547 (7)
Cl1B 0.6300 (2) 0.84657 (8) 0.66202 (6) 0.0862 (3)
N1B 0.1456 (5) 0.65696 (18) 0.78845 (16) 0.0515 (6)
N2B 0.0936 (6) 0.4597 (2) 0.81654 (19) 0.0696 (7)
C1B 0.2208 (6) 0.5431 (2) 0.77885 (16) 0.0536 (7)
C2B 0.4312 (6) 0.5216 (3) 0.72826 (17) 0.0622 (7)
C3B 0.5552 (7) 0.6116 (3) 0.69219 (18) 0.0647 (8)
C4B 0.4720 (6) 0.7291 (2) 0.70553 (16) 0.0592 (7)
C5B 0.2675 (6) 0.7496 (2) 0.75301 (17) 0.0543 (7)
F1A 0.1120 (15) 0.2688 (5) 0.6659 (3) 0.103 (2) 0.672 (12)
F2A −0.2319 (10) 0.2039 (11) 0.7180 (3) 0.145 (3) 0.672 (12)
F3A −0.002 (2) 0.0953 (5) 0.6438 (3) 0.133 (3) 0.672 (12)
F1C −0.050 (4) 0.2829 (7) 0.6917 (10) 0.120 (5) 0.328 (12)
F2C −0.217 (2) 0.1179 (12) 0.6924 (8) 0.113 (4) 0.328 (12)
F3C 0.135 (3) 0.1402 (18) 0.6367 (6) 0.143 (6) 0.328 (12)
O1A 0.2546 (5) 0.21708 (17) 0.80805 (12) 0.0645 (5)
O2A 0.1855 (6) 0.0286 (2) 0.77827 (16) 0.0847 (7)
C6A 0.1664 (6) 0.1353 (3) 0.76755 (19) 0.0562 (7)
C7A 0.0082 (7) 0.1732 (3) 0.69751 (19) 0.0725 (9)
F1B 0.6266 (18) 0.7635 (7) 1.0334 (4) 0.106 (2) 0.587 (15)
F2B 0.2762 (14) 0.7160 (13) 0.9780 (4) 0.134 (3) 0.587 (15)
F3B 0.473 (3) 0.5940 (5) 1.0508 (5) 0.129 (3) 0.587 (15)
F1D 0.490 (4) 0.7839 (5) 1.0133 (8) 0.120 (4) 0.413 (15)
F2D 0.2692 (17) 0.6301 (14) 0.9986 (7) 0.123 (4) 0.413 (15)
F3D 0.615 (3) 0.6227 (14) 1.0603 (5) 0.134 (4) 0.413 (15)
O1B 0.7544 (5) 0.71703 (17) 0.88936 (12) 0.0642 (5)
O2B 0.6855 (6) 0.5286 (2) 0.91889 (15) 0.0840 (7)
C6B 0.6665 (6) 0.6354 (3) 0.92942 (19) 0.0560 (7)
C7B 0.5093 (7) 0.6735 (3) 0.99991 (19) 0.0718 (9)
H1NA 0.507 (7) 0.829 (3) 0.3734 (17) 0.059 (8)*
H2NA 0.470 (6) 1.021 (3) 0.3463 (17) 0.073 (10)*
H3NA 0.652 (7) 1.112 (2) 0.388 (2) 0.071 (10)*
H2AA 0.998 (8) 1.056 (4) 0.477 (2) 0.081 (10)*
H3AA 1.194 (7) 0.905 (3) 0.543 (2) 0.073 (10)*
H5AA 0.694 (6) 0.673 (3) 0.4342 (16) 0.050 (7)*
H1NB 0.023 (7) 0.672 (3) 0.8221 (18) 0.059 (9)*
H2NB −0.023 (5) 0.479 (2) 0.8537 (14) 0.057 (8)*
H3NB 0.143 (8) 0.386 (2) 0.811 (2) 0.079 (11)*
H2BA 0.494 (7) 0.448 (3) 0.719 (2) 0.077 (10)*
H3BA 0.701 (8) 0.598 (4) 0.656 (2) 0.081 (11)*
H5BA 0.192 (7) 0.826 (3) 0.7621 (19) 0.065 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1A 0.0909 (6) 0.0709 (6) 0.0971 (6) 0.0149 (5) −0.0160 (5) 0.0077 (5)
N1A 0.0552 (15) 0.0349 (13) 0.0625 (15) −0.0015 (9) −0.0004 (12) −0.0045 (10)
N2A 0.082 (2) 0.0340 (13) 0.0903 (19) −0.0087 (13) −0.0106 (16) 0.0013 (13)
C1A 0.0606 (17) 0.0382 (15) 0.0618 (17) −0.0065 (12) 0.0072 (14) −0.0057 (12)
C2A 0.0690 (19) 0.0444 (15) 0.0727 (18) −0.0111 (14) 0.0036 (15) −0.0073 (13)
C3A 0.065 (2) 0.067 (2) 0.0655 (19) −0.0096 (16) −0.0006 (16) −0.0126 (15)
C4A 0.0682 (19) 0.0514 (15) 0.0597 (15) 0.0034 (14) 0.0031 (14) −0.0035 (12)
C5A 0.0636 (19) 0.0372 (14) 0.0634 (16) −0.0017 (13) 0.0059 (14) −0.0033 (12)
Cl1B 0.0915 (6) 0.0693 (6) 0.0976 (6) −0.0155 (5) 0.0171 (5) 0.0067 (5)
N1B 0.0584 (16) 0.0329 (13) 0.0632 (16) 0.0015 (10) 0.0008 (12) −0.0044 (10)
N2B 0.084 (2) 0.0342 (13) 0.0906 (19) 0.0067 (13) 0.0139 (16) 0.0000 (13)
C1B 0.0582 (17) 0.0381 (16) 0.0644 (18) 0.0067 (12) −0.0075 (14) −0.0054 (12)
C2B 0.0684 (19) 0.0443 (15) 0.0737 (18) 0.0119 (14) −0.0043 (15) −0.0100 (13)
C3B 0.067 (2) 0.0648 (19) 0.0627 (18) 0.0089 (16) 0.0010 (16) −0.0096 (15)
C4B 0.0669 (18) 0.0516 (15) 0.0592 (15) −0.0050 (14) −0.0034 (14) −0.0023 (12)
C5B 0.0641 (19) 0.0370 (14) 0.0617 (16) 0.0009 (13) −0.0068 (14) −0.0045 (12)
F1A 0.137 (5) 0.087 (3) 0.085 (3) −0.028 (3) −0.016 (2) 0.036 (2)
F2A 0.079 (3) 0.232 (8) 0.126 (4) 0.045 (4) −0.002 (2) 0.037 (5)
F3A 0.211 (7) 0.091 (3) 0.096 (3) −0.004 (3) −0.049 (4) −0.036 (2)
F1C 0.159 (10) 0.061 (4) 0.141 (8) 0.016 (6) −0.064 (7) −0.002 (5)
F2C 0.088 (6) 0.104 (7) 0.147 (8) −0.016 (5) −0.041 (5) 0.011 (6)
F3C 0.148 (9) 0.204 (11) 0.078 (6) −0.006 (7) 0.005 (6) −0.007 (7)
O1A 0.0824 (15) 0.0373 (11) 0.0737 (13) 0.0111 (9) −0.0104 (11) −0.0062 (9)
O2A 0.1066 (19) 0.0374 (13) 0.110 (2) 0.0061 (12) −0.0211 (15) −0.0014 (12)
C6A 0.0601 (18) 0.0410 (16) 0.0676 (18) 0.0045 (13) 0.0056 (13) −0.0019 (13)
C7A 0.089 (3) 0.0580 (19) 0.071 (2) −0.0068 (18) −0.0022 (18) −0.0009 (15)
F1B 0.122 (5) 0.110 (5) 0.085 (3) −0.021 (3) 0.008 (3) −0.041 (3)
F2B 0.086 (4) 0.196 (8) 0.122 (4) 0.049 (5) 0.006 (3) −0.022 (5)
F3B 0.188 (8) 0.085 (3) 0.116 (4) −0.012 (4) 0.061 (5) 0.028 (3)
F1D 0.174 (9) 0.052 (3) 0.134 (7) 0.006 (5) 0.077 (7) −0.007 (4)
F2D 0.072 (4) 0.141 (8) 0.156 (7) −0.012 (5) 0.030 (4) −0.026 (6)
F3D 0.150 (8) 0.184 (9) 0.066 (4) −0.001 (6) 0.001 (5) 0.033 (5)
O1B 0.0833 (15) 0.0377 (11) 0.0715 (13) 0.0099 (9) 0.0124 (11) 0.0067 (9)
O2B 0.1067 (19) 0.0370 (12) 0.1083 (19) 0.0034 (12) 0.0226 (14) 0.0008 (12)
C6B 0.0605 (18) 0.0381 (16) 0.0696 (18) 0.0039 (13) −0.0061 (13) 0.0001 (13)
C7B 0.089 (3) 0.0571 (19) 0.070 (2) −0.0047 (18) 0.0054 (18) 0.0018 (15)

Geometric parameters (Å, °)

Cl1A—C4A 1.726 (3) C2B—H2BA 0.90 (4)
N1A—C1A 1.355 (4) C3B—C4B 1.411 (5)
N1A—C5A 1.362 (4) C3B—H3BA 0.98 (4)
N1A—H1NA 0.94 (3) C4B—C5B 1.345 (4)
N2A—C1A 1.317 (4) C5B—H5BA 0.95 (4)
N2A—H2NA 0.90 (2) F1A—C7A 1.321 (4)
N2A—H3NA 0.87 (2) F2A—C7A 1.308 (5)
C1A—C2A 1.403 (4) F3A—C7A 1.290 (5)
C2A—C3A 1.358 (5) F1C—C7A 1.276 (7)
C2A—H2AA 0.94 (4) F2C—C7A 1.299 (7)
C3A—C4A 1.411 (5) F3C—C7A 1.299 (7)
C3A—H3AA 0.98 (4) O1A—C6A 1.247 (4)
C4A—C5A 1.336 (4) O2A—C6A 1.223 (4)
C5A—H5AA 0.97 (3) C6A—C7A 1.525 (5)
Cl1B—C4B 1.725 (3) F1B—C7B 1.314 (5)
N1B—C1B 1.351 (4) F2B—C7B 1.325 (5)
N1B—C5B 1.363 (4) F3B—C7B 1.280 (5)
N1B—H1NB 0.87 (3) F1D—C7B 1.272 (6)
N2B—C1B 1.317 (4) F2D—C7B 1.306 (6)
N2B—H2NB 0.902 (19) F3D—C7B 1.317 (7)
N2B—H3NB 0.87 (2) O1B—C6B 1.240 (4)
C1B—C2B 1.404 (4) O2B—C6B 1.224 (4)
C2B—C3B 1.351 (5) C6B—C7B 1.530 (5)
C1A—N1A—C5A 122.7 (3) C2B—C3B—C4B 119.5 (3)
C1A—N1A—H1NA 116.9 (18) C2B—C3B—H3BA 122 (3)
C5A—N1A—H1NA 120.4 (18) C4B—C3B—H3BA 119 (3)
C1A—N2A—H2NA 120 (2) C5B—C4B—C3B 119.5 (3)
C1A—N2A—H3NA 115 (3) C5B—C4B—Cl1B 119.7 (2)
H2NA—N2A—H3NA 124 (3) C3B—C4B—Cl1B 120.8 (3)
N2A—C1A—N1A 118.5 (3) C4B—C5B—N1B 119.7 (3)
N2A—C1A—C2A 123.8 (3) C4B—C5B—H5BA 124 (2)
N1A—C1A—C2A 117.7 (3) N1B—C5B—H5BA 116 (2)
C3A—C2A—C1A 120.2 (3) O2A—C6A—O1A 127.9 (3)
C3A—C2A—H2AA 118 (2) O2A—C6A—C7A 116.2 (3)
C1A—C2A—H2AA 122 (2) O1A—C6A—C7A 115.9 (3)
C2A—C3A—C4A 119.7 (3) F1C—C7A—F3C 109.0 (10)
C2A—C3A—H3AA 120 (2) F1C—C7A—F2C 105.1 (8)
C4A—C3A—H3AA 121 (2) F3C—C7A—F2C 103.6 (9)
C5A—C4A—C3A 119.6 (3) F3A—C7A—F2A 110.2 (6)
C5A—C4A—Cl1A 119.9 (2) F3A—C7A—F1A 105.4 (5)
C3A—C4A—Cl1A 120.4 (3) F2A—C7A—F1A 105.4 (5)
C4A—C5A—N1A 120.1 (3) F3A—C7A—C6A 114.6 (4)
C4A—C5A—H5AA 124.3 (18) F2A—C7A—C6A 109.6 (3)
N1A—C5A—H5AA 115.6 (18) F1A—C7A—C6A 111.1 (3)
C1B—N1B—C5B 123.2 (3) O2B—C6B—O1B 128.2 (3)
C1B—N1B—H1NB 118 (2) O2B—C6B—C7B 116.1 (3)
C5B—N1B—H1NB 118 (2) O1B—C6B—C7B 115.7 (3)
C1B—N2B—H2NB 120.5 (18) F1D—C7B—F2D 107.5 (7)
C1B—N2B—H3NB 119 (3) F3B—C7B—F1B 107.1 (6)
H2NB—N2B—H3NB 119 (3) F1D—C7B—F3D 108.0 (9)
N2B—C1B—N1B 118.8 (3) F2D—C7B—F3D 103.0 (7)
N2B—C1B—C2B 124.1 (3) F3B—C7B—F2B 109.3 (6)
N1B—C1B—C2B 117.1 (3) F1B—C7B—F2B 104.3 (5)
C3B—C2B—C1B 121.0 (3) F3B—C7B—C6B 116.1 (4)
C3B—C2B—H2BA 117 (2) F1B—C7B—C6B 110.3 (4)
C1B—C2B—H2BA 122 (2) F2B—C7B—C6B 109.0 (4)
C5A—N1A—C1A—N2A 179.3 (3) O2A—C6A—C7A—F3A −24.8 (7)
C5A—N1A—C1A—C2A −1.7 (4) O1A—C6A—C7A—F3A 157.0 (6)
N2A—C1A—C2A—C3A −179.8 (3) O2A—C6A—C7A—F3C −66.6 (11)
N1A—C1A—C2A—C3A 1.2 (4) O1A—C6A—C7A—F3C 115.3 (11)
C1A—C2A—C3A—C4A 0.3 (5) O2A—C6A—C7A—F2C 47.5 (10)
C2A—C3A—C4A—C5A −1.5 (5) O1A—C6A—C7A—F2C −130.6 (9)
C2A—C3A—C4A—Cl1A 178.4 (2) O2A—C6A—C7A—F2A 99.7 (7)
C3A—C4A—C5A—N1A 1.1 (4) O1A—C6A—C7A—F2A −78.4 (7)
Cl1A—C4A—C5A—N1A −178.8 (2) O2A—C6A—C7A—F1A −144.2 (5)
C1A—N1A—C5A—C4A 0.5 (4) O1A—C6A—C7A—F1A 37.6 (5)
C5B—N1B—C1B—N2B 178.9 (3) O2B—C6B—C7B—F1D 178.7 (12)
C5B—N1B—C1B—C2B −1.5 (4) O1B—C6B—C7B—F1D −2.6 (12)
N2B—C1B—C2B—C3B −179.1 (3) O2B—C6B—C7B—F3B 17.6 (8)
N1B—C1B—C2B—C3B 1.3 (4) O1B—C6B—C7B—F3B −163.7 (8)
C1B—C2B—C3B—C4B 0.0 (5) O2B—C6B—C7B—F2D −56.8 (10)
C2B—C3B—C4B—C5B −1.1 (5) O1B—C6B—C7B—F2D 121.9 (9)
C2B—C3B—C4B—Cl1B 178.7 (3) O2B—C6B—C7B—F1B 139.6 (6)
C3B—C4B—C5B—N1B 0.9 (4) O1B—C6B—C7B—F1B −41.6 (6)
Cl1B—C4B—C5B—N1B −178.8 (2) O2B—C6B—C7B—F3D 55.7 (9)
C1B—N1B—C5B—C4B 0.4 (4) O1B—C6B—C7B—F3D −125.6 (9)
O2A—C6A—C7A—F1C 169.3 (13) O2B—C6B—C7B—F2B −106.4 (8)
O1A—C6A—C7A—F1C −8.9 (13) O1B—C6B—C7B—F2B 72.4 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1A—H1NA···O1Ai 0.94 (3) 1.79 (3) 2.727 (3) 173 (3)
N2A—H2NA···O2Ai 0.90 (3) 1.95 (3) 2.840 (4) 175 (3)
N2A—H3NA···O1Bii 0.87 (3) 2.00 (2) 2.863 (3) 171 (4)
N1B—H1NB···O1Biii 0.87 (3) 1.87 (3) 2.734 (3) 175 (3)
N2B—H2NB···O2Biii 0.90 (2) 1.94 (2) 2.838 (4) 170 (2)
N2B—H3NB···O1A 0.87 (3) 1.99 (2) 2.861 (3) 175 (4)
C5A—H5AA···O2Bi 0.97 (3) 2.29 (3) 3.210 (4) 158 (3)
C5B—H5BA···O2Aiv 0.96 (3) 2.31 (3) 3.208 (3) 157 (3)

Symmetry codes: (i) x, −y+1, z−1/2; (ii) x, −y+2, z−1/2; (iii) x−1, y, z; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5043).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o557. [DOI] [PMC free article] [PubMed]
  6. Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o578. [DOI] [PMC free article] [PubMed]
  7. Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o464–o465. [DOI] [PMC free article] [PubMed]
  8. Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
  9. Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
  10. Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
  11. Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631. [DOI] [PMC free article] [PubMed]
  12. Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.
  13. Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008196/ci5043sup1.cif

e-66-0o783-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008196/ci5043Isup2.hkl

e-66-0o783-Isup2.hkl (210.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES