Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 6;66(Pt 4):o756. doi: 10.1107/S1600536810007701

6-Bromo-1,3-di-2-propynyl-1H-imidazo[4,5-b]pyridin-2(3H)-one

S Dahmani a, A Haoudi a, F Capet b, El Mokhtar Essassi c, Seik Weng Ng d,*
PMCID: PMC2983980  PMID: 21580601

Abstract

The room-temperature reaction of propargyl bromide and 6-bromo-1,3-dihydro­imidazo[4,5-b]pyridin-2-one in dimethyl­formamide yields the title compound, C12H8BrN3O, which features nitro­gen-bound propynyl substituents. The imidazopyridine fused ring is almost planar (r.m.s. deviation = 0.011 Å); the propynyl chains point in opposite directions relative to the fused ring. One acetyl­enic H atom is hydrogen bonded to the carbonyl O atom of an inversion-related mol­ecule, forming a dimer; adjacent dimers are linked by a second acetyl­ene–pyridine C—H⋯N inter­action, forming a layer motif.

Related literature

For the crystal structures of other imidazo[4,5-b]pyridin-2-ones, see: Kourafalos et al. (2002); Meanwell et al. (1995).graphic file with name e-66-0o756-scheme1.jpg

Experimental

Crystal data

  • C12H8BrN3O

  • M r = 290.12

  • Monoclinic, Inline graphic

  • a = 9.0725 (3) Å

  • b = 18.6212 (5) Å

  • c = 7.0684 (2) Å

  • β = 102.995 (1)°

  • V = 1163.56 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.52 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.15 mm

Data collection

  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.372, T max = 0.620

  • 27315 measured reflections

  • 3383 independent reflections

  • 2810 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.085

  • S = 1.03

  • 3383 reflections

  • 162 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.80 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810007701/hg2650sup1.cif

e-66-0o756-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007701/hg2650Isup2.hkl

e-66-0o756-Isup2.hkl (165.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.95 (1) 2.53 (2) 3.392 (3) 151 (3)
C12—H12⋯N1ii 0.94 (1) 2.51 (2) 3.346 (2) 149 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank Université Sidi Mohamed Ben Abdallah, Université Mohammed V-Agdal and the University of Malaya for supporting this study.

supplementary crystallographic information

Experimental

To a solution of 6-bromo-1,3-dihydroimidazo[4,5-b]pyridin-2-one (1 mmol), potassium carbonate (4 mmol) and tetra-n-butylammonium bromide (0.1 mmol) in DMF (20 ml) was added propargyl bromide (2.5 mmol). The solution was stirred for 48 hours. After completion of the reaction (as monitored byTLC), the salt was filtered and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel by using an ethyl acetate/hexane (1/1) mixture as eluent. Slow evaporation of the solvent furnished yellow crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The terminal acetylenic H-atoms were located in a difference Fourier map, and were refined with a distance restraint of C–H 0.95±0.01 Å; their temperature factors were refined.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of C12H8BrN3O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C12H8BrN3O F(000) = 576
Mr = 290.12 Dx = 1.656 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9924 reflections
a = 9.0725 (3) Å θ = 2.3–31.8°
b = 18.6212 (5) Å µ = 3.52 mm1
c = 7.0684 (2) Å T = 293 K
β = 102.995 (1)° Prism, yellow
V = 1163.56 (6) Å3 0.35 × 0.30 × 0.15 mm
Z = 4

Data collection

Bruker X8 APEXII diffractometer 3383 independent reflections
Radiation source: fine-focus sealed tube 2810 reflections with I > 2σ(I)
graphite Rint = 0.032
φ and ω scans θmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −12→12
Tmin = 0.372, Tmax = 0.620 k = −26→26
27315 measured reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.4099P] where P = (Fo2 + 2Fc2)/3
3383 reflections (Δ/σ)max = 0.001
162 parameters Δρmax = 0.87 e Å3
2 restraints Δρmin = −0.80 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.40313 (3) 0.071904 (9) 0.35455 (3) 0.05174 (9)
O1 0.32318 (15) 0.47483 (7) 0.3528 (2) 0.0435 (3)
N1 0.12161 (15) 0.24467 (8) 0.3731 (2) 0.0354 (3)
N2 0.18505 (15) 0.37028 (8) 0.3651 (2) 0.0326 (3)
N3 0.42693 (14) 0.35966 (7) 0.35770 (18) 0.0289 (3)
C1 0.1822 (2) 0.17839 (9) 0.3720 (2) 0.0368 (4)
H1 0.1213 0.1387 0.3786 0.044*
C2 0.3302 (2) 0.16693 (8) 0.3614 (2) 0.0322 (3)
C3 0.43018 (17) 0.22350 (8) 0.3550 (2) 0.0289 (3)
H3 0.5302 0.2161 0.3481 0.035*
C4 0.21635 (17) 0.29782 (8) 0.3662 (2) 0.0279 (3)
C5 0.36927 (16) 0.29091 (8) 0.3596 (2) 0.0251 (3)
C6 0.0418 (2) 0.40256 (12) 0.3799 (3) 0.0457 (4)
H6A 0.0621 0.4471 0.4522 0.055*
H6B −0.0093 0.3705 0.4524 0.055*
C7 −0.0586 (2) 0.41743 (12) 0.1911 (3) 0.0484 (5)
C8 −0.1389 (3) 0.43130 (16) 0.0410 (4) 0.0699 (8)
H8 −0.212 (3) 0.442 (2) −0.073 (3) 0.108 (13)*
C9 0.31325 (18) 0.40998 (9) 0.3577 (2) 0.0307 (3)
C10 0.58352 (18) 0.38016 (10) 0.3664 (3) 0.0380 (4)
H10A 0.5957 0.4311 0.3946 0.046*
H10B 0.6068 0.3718 0.2408 0.046*
C11 0.68988 (18) 0.33965 (10) 0.5150 (3) 0.0397 (4)
C12 0.7772 (2) 0.30575 (14) 0.6294 (4) 0.0559 (6)
H12 0.849 (2) 0.2804 (13) 0.721 (3) 0.070 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.07831 (18) 0.02651 (10) 0.04492 (13) 0.00475 (8) 0.00231 (10) −0.00343 (6)
O1 0.0484 (7) 0.0281 (6) 0.0488 (7) 0.0041 (5) −0.0001 (6) 0.0039 (5)
N1 0.0277 (6) 0.0436 (8) 0.0344 (7) −0.0079 (6) 0.0059 (5) −0.0006 (6)
N2 0.0261 (6) 0.0344 (7) 0.0357 (7) 0.0063 (5) 0.0039 (5) 0.0004 (5)
N3 0.0234 (6) 0.0261 (6) 0.0353 (6) −0.0012 (4) 0.0023 (5) 0.0030 (5)
C1 0.0402 (9) 0.0356 (8) 0.0330 (8) −0.0124 (7) 0.0050 (7) −0.0002 (6)
C2 0.0437 (9) 0.0262 (7) 0.0246 (7) −0.0018 (6) 0.0036 (6) −0.0010 (5)
C3 0.0291 (7) 0.0294 (7) 0.0276 (7) 0.0028 (5) 0.0051 (6) 0.0003 (5)
C4 0.0248 (7) 0.0332 (7) 0.0240 (6) 0.0005 (5) 0.0022 (5) −0.0001 (5)
C5 0.0237 (6) 0.0269 (7) 0.0236 (6) −0.0015 (5) 0.0034 (5) 0.0005 (5)
C6 0.0346 (9) 0.0554 (11) 0.0481 (10) 0.0163 (8) 0.0114 (8) −0.0029 (9)
C7 0.0306 (9) 0.0535 (11) 0.0610 (12) 0.0143 (8) 0.0101 (8) 0.0079 (9)
C8 0.0452 (13) 0.093 (2) 0.0672 (16) 0.0256 (12) 0.0040 (11) 0.0159 (13)
C9 0.0304 (7) 0.0294 (7) 0.0286 (7) 0.0028 (6) −0.0014 (6) 0.0018 (6)
C10 0.0274 (7) 0.0392 (9) 0.0457 (9) −0.0064 (6) 0.0047 (7) 0.0103 (7)
C11 0.0236 (7) 0.0455 (9) 0.0482 (10) −0.0043 (6) 0.0042 (7) 0.0049 (8)
C12 0.0307 (9) 0.0659 (14) 0.0661 (14) 0.0016 (9) 0.0002 (9) 0.0171 (11)

Geometric parameters (Å, °)

Br1—C2 1.8935 (16) C3—C5 1.375 (2)
O1—C9 1.212 (2) C3—H3 0.9300
N1—C4 1.319 (2) C4—C5 1.405 (2)
N1—C1 1.352 (2) C6—C7 1.463 (3)
N2—C4 1.378 (2) C6—H6A 0.9700
N2—C9 1.389 (2) C6—H6B 0.9700
N2—C6 1.457 (2) C7—C8 1.173 (3)
N3—C5 1.3842 (19) C8—H8 0.948 (10)
N3—C9 1.394 (2) C10—C11 1.466 (2)
N3—C10 1.459 (2) C10—H10A 0.9700
C1—C2 1.379 (3) C10—H10B 0.9700
C1—H1 0.9300 C11—C12 1.179 (3)
C2—C3 1.397 (2) C12—H12 0.939 (10)
C4—N1—C1 114.56 (14) N3—C5—C4 107.09 (13)
C4—N2—C9 110.37 (13) N2—C6—C7 113.27 (16)
C4—N2—C6 126.11 (16) N2—C6—H6A 108.9
C9—N2—C6 123.44 (15) C7—C6—H6A 108.9
C5—N3—C9 109.91 (13) N2—C6—H6B 108.9
C5—N3—C10 127.46 (14) C7—C6—H6B 108.9
C9—N3—C10 122.53 (14) H6A—C6—H6B 107.7
N1—C1—C2 122.96 (15) C8—C7—C6 178.2 (3)
N1—C1—H1 118.5 C7—C8—H8 174 (2)
C2—C1—H1 118.5 O1—C9—N2 126.84 (15)
C1—C2—C3 122.16 (15) O1—C9—N3 127.61 (16)
C1—C2—Br1 119.74 (12) N2—C9—N3 105.55 (13)
C3—C2—Br1 118.10 (13) N3—C10—C11 111.93 (14)
C5—C3—C2 114.86 (14) N3—C10—H10A 109.2
C5—C3—H3 122.6 C11—C10—H10A 109.2
C2—C3—H3 122.6 N3—C10—H10B 109.2
N1—C4—N2 126.85 (15) C11—C10—H10B 109.2
N1—C4—C5 126.10 (15) H10A—C10—H10B 107.9
N2—C4—C5 107.05 (13) C12—C11—C10 177.6 (2)
C3—C5—N3 133.58 (14) C11—C12—H12 177.7 (17)
C3—C5—C4 119.33 (14)
C4—N1—C1—C2 −1.0 (2) N1—C4—C5—C3 1.7 (2)
N1—C1—C2—C3 1.4 (3) N2—C4—C5—C3 −178.61 (13)
N1—C1—C2—Br1 −178.53 (12) N1—C4—C5—N3 −178.81 (14)
C1—C2—C3—C5 −0.2 (2) N2—C4—C5—N3 0.92 (16)
Br1—C2—C3—C5 179.73 (10) C4—N2—C6—C7 −93.3 (2)
C1—N1—C4—N2 179.82 (15) C9—N2—C6—C7 90.2 (2)
C1—N1—C4—C5 −0.5 (2) C4—N2—C9—O1 179.15 (16)
C9—N2—C4—N1 179.78 (15) C6—N2—C9—O1 −3.9 (3)
C6—N2—C4—N1 2.9 (3) C4—N2—C9—N3 −0.99 (17)
C9—N2—C4—C5 0.05 (17) C6—N2—C9—N3 175.99 (15)
C6—N2—C4—C5 −176.84 (15) C5—N3—C9—O1 −178.56 (16)
C2—C3—C5—N3 179.41 (15) C10—N3—C9—O1 4.8 (3)
C2—C3—C5—C4 −1.2 (2) C5—N3—C9—N2 1.58 (17)
C9—N3—C5—C3 177.86 (16) C10—N3—C9—N2 −175.03 (14)
C10—N3—C5—C3 −5.7 (3) C5—N3—C10—C11 −45.0 (2)
C9—N3—C5—C4 −1.58 (16) C9—N3—C10—C11 131.00 (17)
C10—N3—C5—C4 174.83 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8···O1i 0.95 (1) 2.53 (2) 3.392 (3) 151 (3)
C12—H12···N1ii 0.94 (1) 2.51 (2) 3.346 (2) 149 (2)

Symmetry codes: (i) −x, −y+1, −z; (ii) x+1, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2650).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Kourafalos, V. N., Marakos, P., Pouli, N., Terzis, A. & Townsend, L. B. (2002). Heterocycles, 57, 2335–2343.
  4. Meanwell, N. A., Sit, S. Y., Gao, J. N., Wong, H. S., Gao, Q., St Laurent, D. R. & Balasubramanian, N. (1995). J. Org. Chem.50, 1565–1582.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2010). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810007701/hg2650sup1.cif

e-66-0o756-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007701/hg2650Isup2.hkl

e-66-0o756-Isup2.hkl (165.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES