Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 6;66(Pt 4):o760. doi: 10.1107/S1600536810007920

16-O-Methyl­cafestol

Xia-Li Liao a, Xiao-Zhen Chen a, Kai-Bei Yu b, Guo-You Li a,*
PMCID: PMC2983991  PMID: 21580605

Abstract

The title compound [systematic name: (3bS,5aS,7R,8R,10aR,10bS)-7-meth­oxy-10b-methyl-3b,4,5,6,7,8,9,10,10a,10b,11,12-dodeca­hydro-5a,8-methano-5aH-cyclo­hepta­l[5,6]naph­tho[2,1-b]furan-7-methanol], C21H30O3, was isolated from the beans of Coffea robusta. The mol­ecule contains five fused rings including a furan ring. The two six-membered rings are in chair conformations, but the third six-membered ring and the five-membered aliphatic ring adopt envelope conformations. Inter­molecular O—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For related structures, see: Beattie & Mills (1955); Djerassi et al. (1959); Finnegan & Djerassi (1960); Scott et al. (1962); Ducruix et al. (1977); Chakrabarti & Venkatesan (1981). For a total synthesis of cafestol, see: Corey et al. (1987). For the absolute configuration of a related compound, see: Djerassi et al. (1953). For the relative configuration, see: Scharnhop & Winterhalter (2009).graphic file with name e-66-0o760-scheme1.jpg

Experimental

Crystal data

  • C21H30O3

  • M r = 330.45

  • Monoclinic, Inline graphic

  • a = 10.6399 (9) Å

  • b = 7.0001 (5) Å

  • c = 11.5765 (12) Å

  • β = 92.640 (5)°

  • V = 861.31 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 93 K

  • 0.50 × 0.33 × 0.20 mm

Data collection

  • Rigaku SPIDER diffractometer

  • 6921 measured reflections

  • 2116 independent reflections

  • 1961 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.069

  • S = 1.00

  • 2116 reflections

  • 223 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810007920/xu2727sup1.cif

e-66-0o760-sup1.cif (23KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007920/xu2727Isup2.hkl

e-66-0o760-Isup2.hkl (104KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O2i 0.81 (3) 1.97 (3) 2.7479 (19) 163 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the analytical staff of Chengdu Institute of Biology, CAS, for measuring the NMR spectra.

supplementary crystallographic information

Comment

Coffea robusta is a species of coffee which has its origins in western Africa. As a part of our research on the bioactive constituents in coffee, the title compound was isolated. Its relative configuration was obtained from ESI-MS and NMR analyses, which were compared with a recent report (Scharnhop et al., 2009), and confirmed by Single-crystal X-ray diffraction study. The molecule of the title compound contains a five-ring system A/B/C/D/E(Fig. 1). There is a trans junction between ring A(C1—C5/C10)and ring B(C5—C10). Cis junction are present between ring B and ring C(C8—C9/C11—C14) and ring C and ring D(C8/C13—C16). Ring A and D are both in envelope-like conformations, with C10 and C16 at the flap, respectively. Ring B and C both adopt chair conformations. The furan ring E(C5—C6/C18—C19/O1), of course, is planar. Intermolecular O—H···O hydrogen bonding helps to stabilize the crystal structure(Fig. 2).

Experimental

The powdered seeds of Coffea robusta were extracted with cyclohexane and filtered. The filtrate was evaporated under reduced pressure. Then the residue was hydrolyzed with KOH in EtOH and extracted with tert-Butyl methyl ether(TBME). The extract was chromatograhed over Silica gel column with eluent of petroleum ether/ethyl acetate(3:1) to provide the title compound as white solid. It was recrystallized in acetone to afford suitable crystals for Single-crystal X-ray diffraction analysis.

Refinement

Hydroxyl H atom was located in a difference Fourier map and was refined isotropically. Other H atoms were located geometrically with C—H = 0.95-1.00 Å, and were refined in riding mode with Uiso(H) = 1.2Ueq(C). The absolute configuration could not be determined from the X-ray analysis, owing to the absence of significant anomalous scattering, and Friedel pairs were merged. The absolute configuration was assigned by a comparison between the measured Optical Rotatory Power ([α]24D = -121° (c=0.4, CHCl3)) and a previous work (For Cafestol: [α]24D = -97° (CHCl3)) (Djerassi et al., 1953).

Figures

Fig. 1.

Fig. 1.

View of the title molecule showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title molecule, viewed down the a axis. H atoms were omitted for clarity.

Crystal data

C21H30O3 F(000) = 360
Mr = 330.45 Dx = 1.274 Mg m3
Monoclinic, P21 Melting point: 448 K
Hall symbol: P 2yb Mo Kα radiation, λ = 0.71073 Å
a = 10.6399 (9) Å Cell parameters from 2892 reflections
b = 7.0001 (5) Å θ = 3.4–27.5°
c = 11.5765 (12) Å µ = 0.08 mm1
β = 92.640 (5)° T = 93 K
V = 861.31 (13) Å3 Prism, colorless
Z = 2 0.50 × 0.33 × 0.20 mm

Data collection

Rigaku SPIDER diffractometer 1961 reflections with I > 2σ(I)
Radiation source: Rotating Anode Rint = 0.029
graphite θmax = 27.5°, θmin = 3.4°
ω scans h = −12→13
6921 measured reflections k = −9→9
2116 independent reflections l = −15→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0309P)2 + 0.16P] where P = (Fo2 + 2Fc2)/3
2116 reflections (Δ/σ)max < 0.001
223 parameters Δρmax = 0.22 e Å3
1 restraint Δρmin = −0.15 e Å3

Special details

Experimental. 13C NMR (150 MHz, CDCl3, δ, p.p.m.): 148.8(C3), 140.6(C19), 120.1(C4), 108.3(C18), 87.0(C16), 60.5(C17), 52.1(C5), 49.1(C15), 48.9(C21), 44.4(C8), 44.3(C9), 41.5(C13), 41.0(C7), 38.7(C10), 37.8(C14), 35.8(C1), 25.7(C12), 23.1(C6), 20.6(C2), 19.2(C11), 13.3(C20).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.09240 (11) 0.1142 (2) 0.60603 (10) 0.0202 (3)
O2 0.91263 (11) 0.64850 (18) 0.83888 (10) 0.0180 (3)
O3 1.04079 (14) 0.3897 (2) 0.97682 (12) 0.0259 (3)
C1 0.41584 (16) 0.0015 (3) 0.73392 (16) 0.0173 (4)
H1A 0.4554 −0.0512 0.6651 0.021*
H1B 0.4492 −0.0705 0.8022 0.021*
C2 0.27216 (16) −0.0310 (3) 0.72069 (16) 0.0196 (4)
H2A 0.2544 −0.1577 0.6857 0.024*
H2B 0.2349 −0.0272 0.7975 0.024*
C3 0.21656 (16) 0.1217 (3) 0.64550 (14) 0.0167 (4)
C4 0.27270 (16) 0.2813 (3) 0.60818 (14) 0.0159 (4)
C5 0.41066 (16) 0.3158 (3) 0.63354 (15) 0.0148 (4)
H5 0.4551 0.2495 0.5707 0.018*
C6 0.45291 (16) 0.5236 (3) 0.62997 (15) 0.0174 (4)
H6A 0.4238 0.5930 0.6983 0.021*
H6B 0.4167 0.5865 0.5594 0.021*
C7 0.59643 (16) 0.5269 (3) 0.62984 (15) 0.0175 (4)
H7A 0.6254 0.6613 0.6279 0.021*
H7B 0.6238 0.4632 0.5589 0.021*
C8 0.65845 (16) 0.4275 (3) 0.73580 (14) 0.0148 (4)
C9 0.60201 (16) 0.2259 (2) 0.75520 (15) 0.0141 (4)
H9 0.6291 0.1485 0.6881 0.017*
C10 0.45483 (16) 0.2142 (3) 0.74799 (15) 0.0145 (4)
C11 0.66860 (16) 0.1311 (3) 0.86261 (14) 0.0175 (4)
H11A 0.6107 0.0350 0.8935 0.021*
H11B 0.7433 0.0617 0.8367 0.021*
C12 0.71155 (17) 0.2649 (3) 0.96239 (15) 0.0188 (4)
H12A 0.6400 0.2854 1.0127 0.023*
H12B 0.7793 0.2009 1.0094 0.023*
C13 0.75979 (16) 0.4604 (3) 0.92313 (15) 0.0161 (4)
H13 0.7822 0.5436 0.9912 0.019*
C14 0.65661 (17) 0.5522 (3) 0.84587 (15) 0.0167 (4)
H14A 0.6765 0.6872 0.8288 0.020*
H14B 0.5740 0.5457 0.8817 0.020*
C15 0.80304 (16) 0.4041 (3) 0.72158 (14) 0.0166 (4)
H15A 0.8227 0.2716 0.6986 0.020*
H15B 0.8319 0.4923 0.6614 0.020*
C16 0.86878 (16) 0.4516 (3) 0.84003 (15) 0.0159 (4)
C17 0.97698 (17) 0.3184 (3) 0.87504 (15) 0.0198 (4)
H17A 0.9441 0.1887 0.8897 0.024*
H17B 1.0362 0.3099 0.8117 0.024*
C18 0.17903 (17) 0.3819 (3) 0.53822 (16) 0.0201 (4)
H18 0.1897 0.4990 0.4983 0.024*
C19 0.07310 (17) 0.2766 (3) 0.54064 (16) 0.0213 (4)
H19 −0.0046 0.3101 0.5023 0.026*
C20 0.39111 (16) 0.2962 (3) 0.85393 (15) 0.0181 (4)
H20A 0.4278 0.2371 0.9244 0.022*
H20B 0.3007 0.2690 0.8475 0.022*
H20C 0.4043 0.4347 0.8573 0.022*
C21 1.01924 (17) 0.6855 (3) 0.77196 (17) 0.0233 (4)
H21A 1.0082 0.6217 0.6968 0.028*
H21B 1.0953 0.6368 0.8129 0.028*
H21C 1.0275 0.8235 0.7601 0.028*
H3O 1.052 (2) 0.302 (4) 1.021 (2) 0.043 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0154 (6) 0.0215 (7) 0.0235 (7) −0.0012 (6) −0.0020 (5) −0.0019 (6)
O2 0.0194 (6) 0.0162 (7) 0.0184 (6) −0.0047 (5) 0.0000 (5) 0.0010 (5)
O3 0.0326 (8) 0.0219 (8) 0.0221 (7) −0.0020 (6) −0.0116 (6) 0.0034 (6)
C1 0.0173 (9) 0.0132 (9) 0.0210 (9) −0.0003 (7) −0.0024 (7) 0.0013 (7)
C2 0.0195 (9) 0.0148 (9) 0.0245 (10) −0.0037 (7) −0.0004 (7) 0.0005 (7)
C3 0.0129 (8) 0.0196 (9) 0.0172 (8) −0.0006 (8) −0.0015 (6) −0.0029 (8)
C4 0.0178 (9) 0.0166 (9) 0.0135 (8) 0.0014 (7) 0.0009 (6) −0.0031 (7)
C5 0.0152 (8) 0.0135 (9) 0.0157 (8) −0.0008 (7) 0.0002 (6) −0.0001 (7)
C6 0.0190 (9) 0.0149 (9) 0.0181 (9) −0.0007 (7) −0.0007 (7) 0.0046 (7)
C7 0.0180 (9) 0.0169 (9) 0.0174 (9) −0.0043 (7) −0.0002 (7) 0.0034 (7)
C8 0.0156 (8) 0.0135 (8) 0.0154 (8) −0.0015 (7) 0.0008 (6) 0.0010 (7)
C9 0.0145 (8) 0.0129 (8) 0.0148 (9) −0.0011 (7) 0.0007 (6) −0.0016 (7)
C10 0.0156 (8) 0.0123 (8) 0.0154 (9) −0.0008 (7) −0.0009 (7) 0.0012 (7)
C11 0.0181 (9) 0.0138 (8) 0.0204 (9) −0.0018 (8) −0.0016 (7) 0.0021 (8)
C12 0.0204 (9) 0.0207 (10) 0.0152 (9) −0.0047 (8) −0.0016 (7) 0.0031 (8)
C13 0.0187 (9) 0.0160 (9) 0.0135 (8) −0.0038 (7) 0.0007 (7) −0.0025 (7)
C14 0.0170 (9) 0.0132 (8) 0.0199 (9) −0.0024 (7) 0.0018 (7) −0.0026 (7)
C15 0.0164 (8) 0.0181 (9) 0.0155 (8) −0.0021 (7) 0.0014 (6) −0.0003 (7)
C16 0.0168 (9) 0.0133 (9) 0.0176 (9) −0.0038 (7) −0.0011 (7) −0.0005 (7)
C17 0.0199 (9) 0.0204 (10) 0.0189 (9) −0.0016 (8) −0.0030 (7) −0.0015 (8)
C18 0.0207 (9) 0.0206 (10) 0.0190 (9) 0.0023 (8) −0.0006 (7) −0.0002 (8)
C19 0.0182 (9) 0.0253 (10) 0.0201 (9) 0.0035 (8) −0.0024 (7) 0.0001 (8)
C20 0.0167 (8) 0.0204 (9) 0.0171 (9) −0.0037 (8) 0.0007 (7) 0.0000 (8)
C21 0.0212 (9) 0.0271 (11) 0.0215 (10) −0.0078 (8) 0.0002 (7) 0.0039 (8)

Geometric parameters (Å, °)

O1—C19 1.376 (2) C9—C10 1.566 (2)
O1—C3 1.379 (2) C9—H9 1.0000
O2—C21 1.427 (2) C10—C20 1.539 (2)
O2—C16 1.455 (2) C11—C12 1.540 (2)
O3—C17 1.423 (2) C11—H11A 0.9900
O3—H3O 0.81 (3) C11—H11B 0.9900
C1—C2 1.546 (2) C12—C13 1.538 (3)
C1—C10 1.552 (2) C12—H12A 0.9900
C1—H1A 0.9900 C12—H12B 0.9900
C1—H1B 0.9900 C13—C14 1.526 (3)
C2—C3 1.484 (3) C13—C16 1.542 (2)
C2—H2A 0.9900 C13—H13 1.0000
C2—H2B 0.9900 C14—H14A 0.9900
C3—C4 1.347 (3) C14—H14B 0.9900
C4—C18 1.439 (2) C15—C16 1.547 (2)
C4—C5 1.503 (2) C15—H15A 0.9900
C5—C6 1.524 (3) C15—H15B 0.9900
C5—C10 1.557 (2) C16—C17 1.522 (3)
C5—H5 1.0000 C17—H17A 0.9900
C6—C7 1.527 (2) C17—H17B 0.9900
C6—H6A 0.9900 C18—C19 1.348 (3)
C6—H6B 0.9900 C18—H18 0.9500
C7—C8 1.533 (2) C19—H19 0.9500
C7—H7A 0.9900 C20—H20A 0.9800
C7—H7B 0.9900 C20—H20B 0.9800
C8—C14 1.546 (2) C20—H20C 0.9800
C8—C9 1.554 (2) C21—H21A 0.9800
C8—C15 1.563 (2) C21—H21B 0.9800
C9—C11 1.552 (2) C21—H21C 0.9800
C19—O1—C3 105.49 (14) C9—C11—H11A 108.1
C21—O2—C16 116.12 (14) C12—C11—H11B 108.1
C17—O3—H3O 107.8 (19) C9—C11—H11B 108.1
C2—C1—C10 114.20 (14) H11A—C11—H11B 107.3
C2—C1—H1A 108.7 C13—C12—C11 114.28 (14)
C10—C1—H1A 108.7 C13—C12—H12A 108.7
C2—C1—H1B 108.7 C11—C12—H12A 108.7
C10—C1—H1B 108.7 C13—C12—H12B 108.7
H1A—C1—H1B 107.6 C11—C12—H12B 108.7
C3—C2—C1 108.51 (15) H12A—C12—H12B 107.6
C3—C2—H2A 110.0 C14—C13—C12 107.89 (15)
C1—C2—H2A 110.0 C14—C13—C16 101.10 (14)
C3—C2—H2B 110.0 C12—C13—C16 114.82 (15)
C1—C2—H2B 110.0 C14—C13—H13 110.9
H2A—C2—H2B 108.4 C12—C13—H13 110.9
C4—C3—O1 110.95 (16) C16—C13—H13 110.9
C4—C3—C2 127.93 (15) C13—C14—C8 102.08 (14)
O1—C3—C2 121.11 (16) C13—C14—H14A 111.4
C3—C4—C18 106.28 (15) C8—C14—H14A 111.4
C3—C4—C5 120.92 (16) C13—C14—H14B 111.4
C18—C4—C5 132.55 (17) C8—C14—H14B 111.4
C4—C5—C6 115.76 (15) H14A—C14—H14B 109.2
C4—C5—C10 110.29 (14) C16—C15—C8 106.93 (13)
C6—C5—C10 112.40 (14) C16—C15—H15A 110.3
C4—C5—H5 105.9 C8—C15—H15A 110.3
C6—C5—H5 105.9 C16—C15—H15B 110.3
C10—C5—H5 105.9 C8—C15—H15B 110.3
C5—C6—C7 108.12 (15) H15A—C15—H15B 108.6
C5—C6—H6A 110.1 O2—C16—C17 110.11 (14)
C7—C6—H6A 110.1 O2—C16—C13 102.62 (14)
C5—C6—H6B 110.1 C17—C16—C13 116.09 (15)
C7—C6—H6B 110.1 O2—C16—C15 109.12 (14)
H6A—C6—H6B 108.4 C17—C16—C15 114.21 (15)
C6—C7—C8 112.69 (14) C13—C16—C15 103.85 (14)
C6—C7—H7A 109.1 O3—C17—C16 109.38 (16)
C8—C7—H7A 109.1 O3—C17—H17A 109.8
C6—C7—H7B 109.1 C16—C17—H17A 109.8
C8—C7—H7B 109.1 O3—C17—H17B 109.8
H7A—C7—H7B 107.8 C16—C17—H17B 109.8
C7—C8—C14 112.44 (15) H17A—C17—H17B 108.2
C7—C8—C9 111.91 (14) C19—C18—C4 106.20 (17)
C14—C8—C9 111.97 (14) C19—C18—H18 126.9
C7—C8—C15 110.65 (13) C4—C18—H18 126.9
C14—C8—C15 101.29 (13) C18—C19—O1 111.06 (16)
C9—C8—C15 108.00 (14) C18—C19—H19 124.5
C11—C9—C8 109.82 (14) O1—C19—H19 124.5
C11—C9—C10 116.03 (14) C10—C20—H20A 109.5
C8—C9—C10 115.59 (14) C10—C20—H20B 109.5
C11—C9—H9 104.7 H20A—C20—H20B 109.5
C8—C9—H9 104.7 C10—C20—H20C 109.5
C10—C9—H9 104.7 H20A—C20—H20C 109.5
C20—C10—C1 108.40 (15) H20B—C20—H20C 109.5
C20—C10—C5 112.40 (14) O2—C21—H21A 109.5
C1—C10—C5 106.25 (14) O2—C21—H21B 109.5
C20—C10—C9 114.45 (14) H21A—C21—H21B 109.5
C1—C10—C9 108.50 (14) O2—C21—H21C 109.5
C5—C10—C9 106.46 (14) H21A—C21—H21C 109.5
C12—C11—C9 116.73 (16) H21B—C21—H21C 109.5
C12—C11—H11A 108.1
C10—C1—C2—C3 40.0 (2) C11—C9—C10—C1 −65.34 (19)
C19—O1—C3—C4 0.62 (19) C8—C9—C10—C1 163.96 (14)
C19—O1—C3—C2 179.58 (16) C11—C9—C10—C5 −179.33 (14)
C1—C2—C3—C4 −10.1 (3) C8—C9—C10—C5 49.96 (19)
C1—C2—C3—O1 171.15 (15) C8—C9—C11—C12 33.6 (2)
O1—C3—C4—C18 −1.1 (2) C10—C9—C11—C12 −99.74 (18)
C2—C3—C4—C18 −179.94 (18) C9—C11—C12—C13 −36.3 (2)
O1—C3—C4—C5 −176.03 (15) C11—C12—C13—C14 55.56 (19)
C2—C3—C4—C5 5.1 (3) C11—C12—C13—C16 −56.3 (2)
C3—C4—C5—C6 −157.29 (16) C12—C13—C14—C8 −70.78 (16)
C18—C4—C5—C6 29.3 (3) C16—C13—C14—C8 50.07 (16)
C3—C4—C5—C10 −28.3 (2) C7—C8—C14—C13 −160.51 (14)
C18—C4—C5—C10 158.29 (18) C9—C8—C14—C13 72.48 (16)
C4—C5—C6—C7 −167.16 (13) C15—C8—C14—C13 −42.38 (16)
C10—C5—C6—C7 64.86 (18) C7—C8—C15—C16 138.40 (15)
C5—C6—C7—C8 −58.46 (19) C14—C8—C15—C16 18.98 (18)
C6—C7—C8—C14 −77.13 (19) C9—C8—C15—C16 −98.79 (16)
C6—C7—C8—C9 49.9 (2) C21—O2—C16—C17 53.11 (19)
C6—C7—C8—C15 170.41 (15) C21—O2—C16—C13 177.30 (14)
C7—C8—C9—C11 179.55 (14) C21—O2—C16—C15 −72.99 (18)
C14—C8—C9—C11 −53.16 (18) C14—C13—C16—O2 76.47 (16)
C15—C8—C9—C11 57.52 (17) C12—C13—C16—O2 −167.70 (14)
C7—C8—C9—C10 −46.8 (2) C14—C13—C16—C17 −163.39 (15)
C14—C8—C9—C10 80.45 (18) C12—C13—C16—C17 −47.6 (2)
C15—C8—C9—C10 −168.87 (14) C14—C13—C16—C15 −37.17 (17)
C2—C1—C10—C20 57.47 (19) C12—C13—C16—C15 78.65 (18)
C2—C1—C10—C5 −63.55 (19) C8—C15—C16—O2 −97.88 (16)
C2—C1—C10—C9 −177.68 (14) C8—C15—C16—C17 138.41 (16)
C4—C5—C10—C20 −64.11 (19) C8—C15—C16—C13 11.01 (19)
C6—C5—C10—C20 66.70 (18) O2—C16—C17—O3 49.13 (19)
C4—C5—C10—C1 54.31 (18) C13—C16—C17—O3 −66.9 (2)
C6—C5—C10—C1 −174.88 (14) C15—C16—C17—O3 172.30 (15)
C4—C5—C10—C9 169.83 (14) C3—C4—C18—C19 1.1 (2)
C6—C5—C10—C9 −59.36 (18) C5—C4—C18—C19 175.23 (18)
C11—C9—C10—C20 55.9 (2) C4—C18—C19—O1 −0.8 (2)
C8—C9—C10—C20 −74.85 (19) C3—O1—C19—C18 0.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3O···O2i 0.81 (3) 1.97 (3) 2.7479 (19) 163 (3)

Symmetry codes: (i) −x+2, y−1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2727).

References

  1. Beattie, I. R. & Mills, O. S. (1955). Acta Cryst.8, 123–124.
  2. Chakrabarti, P. & Venkatesan, K. (1981). Acta Cryst. B37, 1142–1144.
  3. Corey, E. J., Wess, G., Xiang, Y. B. & Singh, A. K. (1987). J. Am. Chem. Soc.109, 4717–4718.
  4. Djerassi, C., Cais, M. & Mitscher, L. A. (1959). J. Am. Chem. Soc.81, 2386–2398.
  5. Djerassi, C., Wilfred, E., Visco, L. & Lemin, A. J. (1953). J. Org. Chem.18, 1449–1460.
  6. Ducruix, A., Pascard, C., Hammonniere, M. & Poisson, J. (1977). Acta Cryst. B33, 2846–2850.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Finnegan, R. A. & Djerassi, C. (1960). J. Am. Chem. Soc.82, 4342–4344.
  9. Rigaku (2004). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  10. Scharnhop, H. & Winterhalter, P. (2009). J. Food. Compos. Anal.22, 233–237.
  11. Scott, A. I., Sim, G. A., Ferguson, G., Yong, D. W. & McCapra, F. (1962). J. Am. Chem. Soc.84, 3197–3199.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810007920/xu2727sup1.cif

e-66-0o760-sup1.cif (23KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007920/xu2727Isup2.hkl

e-66-0o760-Isup2.hkl (104KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES