Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 27;66(Pt 4):o953. doi: 10.1107/S1600536810010767

(2-Chloro­benzo[h]quinolin-3-yl)methanol

F Nawaz Khan a, S Mohana Roopan a, Venkatesha R Hathwar b, R Rajesh c, M Khawar Rauf d,*
PMCID: PMC2983997  PMID: 21580757

Abstract

In the title mol­ecule, C14H10ClNO, all non-H atoms are coplanar (r.m.s deviation = 0.0266 Å). In the crystal, symmetry-related mol­ecules are hydrogen bonded via inter­molecular O—H⋯O inter­actions, forming chains along the b axis.

Related literature

The title compound was obtained by the reduction of an aldehyde using Montmorillonite K-10 as catalyst. For background to the use of Montmorillonite clays as catalysts, see: Roopan et al. (2009b ). For related structures, see: Khan et al. (2010a ,b ); Roopan et al. (2009a ).graphic file with name e-66-0o953-scheme1.jpg

Experimental

Crystal data

  • C14H10ClNO

  • M r = 243.68

  • Monoclinic, Inline graphic

  • a = 16.6953 (4) Å

  • b = 4.61459 (11) Å

  • c = 14.5588 (3) Å

  • β = 95.123 (2)°

  • V = 1117.16 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 295 K

  • 0.35 × 0.30 × 0.28 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.896, T max = 0.915

  • 11643 measured reflections

  • 2200 independent reflections

  • 1717 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.093

  • S = 1.08

  • 2200 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810010767/pv2269sup1.cif

e-66-0o953-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010767/pv2269Isup2.hkl

e-66-0o953-Isup2.hkl (106KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.82 1.90 2.7154 (12) 175

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the FIST–DST program at SSCU, IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

Montmorillonite clays have been found to effectively catalyze a broad range of chemical reactions (Roopan et al., 2009b). In continuation of our green chemical approach on the structural chemistry of disubstituted quinolines (Khan et al., 2010a,b; Roopan et al., 2009a), we have demonstarted the reduction of an aldehyde using Montmorillonite K-10 as a catalyst, to obtain the title alcohol. In this article, the crystal structure of the title molecule is presented.

In the title molecule (Fig. 1) all non-hydrogen atoms are coplanar (r.m.s deviation = 0.0266 Å); the C—C—C—O torsion angles are -0.9 (2) and -179.73 (13)°. The crystal structure is composed of discrete molecules with bond lengths and angles quite typical for compounds of this class and agree well with the corresponding bond lengths and angles reported for some related compounds (Khan et al., 2010a & 2010b; Roopan et al., 2009). In the crystal, symmetry related molecules are hydrogen bonded via intermolecular O—H···O type interactions forming one dimensional chains along the b-axis. In addition, an intramolecular interaction, C3—H3···O1 further consolidated the crystal structure.

Experimental

2-Chlorbenzo[h]quinoline-3-carbaldehyde (241 mg, 1 mmol), sodium borohydride (38 mg, 1 mmol) and a catalytic amount of montmorillonite K-10 (100 mg) were placed in a beaker. The contents were irradiated at 500 W for 5 min. The product was dissolved in ethyl acetate and the residue removed by filtration. The filtrate was subjected to column chromatography on silica, and ethyl acetate/petroleum ether was used as the eluant. The solvent was evaporated and the residue recrystallized from chloroform to give colorless crystals.

Refinement

Hydrogen atoms were placed in calculated positions (C—H 0.93–0.97 Å, O—H 0.82 Å)and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C,O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) showing atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C14H10ClNO F(000) = 504
Mr = 243.68 Dx = 1.449 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 11643 reflections
a = 16.6953 (4) Å θ = 2.5–26.0°
b = 4.61459 (11) Å µ = 0.32 mm1
c = 14.5588 (3) Å T = 295 K
β = 95.123 (2)° Block, colourless
V = 1117.16 (5) Å3 0.35 × 0.30 × 0.28 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer 2200 independent reflections
Radiation source: fine-focus sealed tube 1717 reflections with I > 2σ(I)
graphite Rint = 0.028
ω scans θmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) h = −20→20
Tmin = 0.896, Tmax = 0.915 k = −5→5
11643 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.1644P] where P = (Fo2 + 2Fc2)/3
2200 reflections (Δ/σ)max = 0.001
155 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.38036 (3) 0.30225 (12) 0.55246 (3) 0.05783 (19)
N1 0.28031 (8) 0.6236 (3) 0.45110 (8) 0.0350 (3)
O1 0.47139 (8) 0.0886 (3) 0.28368 (8) 0.0497 (3)
H1 0.4911 0.2355 0.2633 0.074*
C2 0.37487 (9) 0.3556 (3) 0.36689 (10) 0.0315 (3)
C1 0.33981 (9) 0.4434 (3) 0.44662 (10) 0.0331 (4)
C7 0.18191 (9) 0.9418 (4) 0.37325 (11) 0.0366 (4)
C9 0.27796 (9) 0.6741 (3) 0.28570 (10) 0.0333 (4)
C3 0.34176 (9) 0.4759 (3) 0.28642 (10) 0.0339 (4)
H3 0.3619 0.4254 0.2311 0.041*
C4 0.24384 (10) 0.8084 (4) 0.20323 (11) 0.0426 (4)
H4 0.2637 0.7635 0.1472 0.051*
C8 0.24801 (9) 0.7420 (3) 0.37074 (10) 0.0309 (3)
C6 0.14987 (10) 1.0709 (4) 0.28978 (12) 0.0417 (4)
C13 0.14771 (10) 1.0095 (4) 0.45516 (12) 0.0478 (4)
H13 0.1685 0.9266 0.5105 0.057*
C5 0.18321 (11) 0.9994 (4) 0.20550 (12) 0.0477 (5)
H5 0.1625 1.0872 0.1510 0.057*
C14 0.44481 (9) 0.1482 (4) 0.37137 (11) 0.0395 (4)
H14A 0.4891 0.2296 0.4108 0.047*
H14B 0.4291 −0.0321 0.3990 0.047*
C10 0.08499 (11) 1.2661 (4) 0.29225 (15) 0.0551 (5)
H10 0.0639 1.3552 0.2381 0.066*
C11 0.05304 (11) 1.3253 (5) 0.37239 (16) 0.0638 (6)
H11 0.0100 1.4531 0.3726 0.077*
C12 0.08390 (12) 1.1971 (5) 0.45434 (15) 0.0609 (6)
H12 0.0612 1.2386 0.5089 0.073*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0679 (3) 0.0734 (4) 0.0331 (2) 0.0227 (3) 0.0093 (2) 0.0130 (2)
N1 0.0384 (7) 0.0381 (8) 0.0294 (7) 0.0009 (6) 0.0085 (5) −0.0015 (6)
O1 0.0613 (8) 0.0343 (7) 0.0590 (8) 0.0033 (6) 0.0365 (6) −0.0016 (6)
C2 0.0339 (8) 0.0279 (8) 0.0340 (8) −0.0049 (7) 0.0095 (6) −0.0023 (6)
C1 0.0390 (8) 0.0338 (9) 0.0274 (8) −0.0005 (7) 0.0076 (6) 0.0018 (7)
C7 0.0335 (8) 0.0339 (9) 0.0424 (9) −0.0040 (7) 0.0040 (7) −0.0054 (7)
C9 0.0355 (8) 0.0351 (9) 0.0297 (8) −0.0068 (7) 0.0049 (6) −0.0011 (7)
C3 0.0388 (8) 0.0368 (9) 0.0277 (8) −0.0058 (7) 0.0122 (6) −0.0062 (7)
C4 0.0469 (10) 0.0511 (11) 0.0299 (8) −0.0052 (9) 0.0047 (7) −0.0014 (8)
C8 0.0316 (8) 0.0321 (8) 0.0293 (7) −0.0040 (6) 0.0051 (6) −0.0030 (6)
C6 0.0380 (9) 0.0358 (9) 0.0500 (10) −0.0046 (7) −0.0034 (7) −0.0026 (8)
C13 0.0440 (10) 0.0516 (11) 0.0484 (10) 0.0057 (9) 0.0075 (8) −0.0106 (8)
C5 0.0511 (10) 0.0491 (11) 0.0410 (9) −0.0024 (9) −0.0062 (8) 0.0071 (8)
C14 0.0422 (9) 0.0354 (10) 0.0429 (9) 0.0008 (7) 0.0145 (7) 0.0001 (7)
C10 0.0465 (11) 0.0458 (11) 0.0697 (13) 0.0043 (9) −0.0130 (9) −0.0032 (10)
C11 0.0427 (11) 0.0594 (13) 0.0874 (16) 0.0163 (10) −0.0053 (10) −0.0185 (12)
C12 0.0467 (11) 0.0668 (14) 0.0698 (13) 0.0104 (10) 0.0094 (9) −0.0210 (11)

Geometric parameters (Å, °)

Cl1—C1 1.7525 (15) C4—C5 1.345 (2)
N1—C1 1.3014 (19) C4—H4 0.9300
N1—C8 1.3585 (19) C6—C10 1.412 (2)
O1—C14 1.4155 (19) C6—C5 1.430 (2)
O1—H1 0.8200 C13—C12 1.372 (2)
C2—C3 1.368 (2) C13—H13 0.9300
C2—C1 1.405 (2) C5—H5 0.9300
C2—C14 1.507 (2) C14—H14A 0.9700
C7—C13 1.402 (2) C14—H14B 0.9700
C7—C6 1.415 (2) C10—C11 1.353 (3)
C7—C8 1.441 (2) C10—H10 0.9300
C9—C3 1.403 (2) C11—C12 1.389 (3)
C9—C8 1.411 (2) C11—H11 0.9300
C9—C4 1.424 (2) C12—H12 0.9300
C3—H3 0.9300
C1—N1—C8 117.39 (13) C10—C6—C5 121.83 (17)
C14—O1—H1 109.5 C7—C6—C5 119.57 (16)
C3—C2—C1 115.09 (14) C12—C13—C7 120.52 (18)
C3—C2—C14 123.18 (14) C12—C13—H13 119.7
C1—C2—C14 121.71 (14) C7—C13—H13 119.7
N1—C1—C2 126.98 (14) C4—C5—C6 121.58 (16)
N1—C1—Cl1 115.47 (11) C4—C5—H5 119.2
C2—C1—Cl1 117.54 (12) C6—C5—H5 119.2
C13—C7—C6 119.02 (16) O1—C14—C2 112.85 (13)
C13—C7—C8 122.33 (15) O1—C14—H14A 109.0
C6—C7—C8 118.64 (15) C2—C14—H14A 109.0
C3—C9—C8 117.80 (13) O1—C14—H14B 109.0
C3—C9—C4 122.41 (14) C2—C14—H14B 109.0
C8—C9—C4 119.78 (15) H14A—C14—H14B 107.8
C2—C3—C9 121.29 (14) C11—C10—C6 120.88 (18)
C2—C3—H3 119.4 C11—C10—H10 119.6
C9—C3—H3 119.4 C6—C10—H10 119.6
C5—C4—C9 120.65 (16) C10—C11—C12 120.66 (18)
C5—C4—H4 119.7 C10—C11—H11 119.7
C9—C4—H4 119.7 C12—C11—H11 119.7
N1—C8—C9 121.44 (14) C13—C12—C11 120.30 (19)
N1—C8—C7 118.79 (13) C13—C12—H12 119.8
C9—C8—C7 119.77 (13) C11—C12—H12 119.8
C10—C6—C7 118.61 (17)
C8—N1—C1—C2 −0.2 (2) C6—C7—C8—N1 178.27 (14)
C8—N1—C1—Cl1 178.89 (11) C13—C7—C8—C9 177.63 (15)
C3—C2—C1—N1 0.1 (2) C6—C7—C8—C9 −1.5 (2)
C14—C2—C1—N1 178.96 (15) C13—C7—C6—C10 0.7 (2)
C3—C2—C1—Cl1 −178.97 (11) C8—C7—C6—C10 179.84 (15)
C14—C2—C1—Cl1 −0.1 (2) C13—C7—C6—C5 −178.81 (16)
C1—C2—C3—C9 0.6 (2) C8—C7—C6—C5 0.4 (2)
C14—C2—C3—C9 −178.32 (14) C6—C7—C13—C12 0.3 (3)
C8—C9—C3—C2 −1.0 (2) C8—C7—C13—C12 −178.85 (16)
C4—C9—C3—C2 178.28 (15) C9—C4—C5—C6 −1.2 (3)
C3—C9—C4—C5 −179.35 (15) C10—C6—C5—C4 −178.47 (16)
C8—C9—C4—C5 0.0 (2) C7—C6—C5—C4 1.0 (3)
C1—N1—C8—C9 −0.4 (2) C3—C2—C14—O1 −0.9 (2)
C1—N1—C8—C7 179.86 (14) C1—C2—C14—O1 −179.73 (13)
C3—C9—C8—N1 0.9 (2) C7—C6—C10—C11 −1.1 (3)
C4—C9—C8—N1 −178.40 (14) C5—C6—C10—C11 178.35 (18)
C3—C9—C8—C7 −179.28 (13) C6—C10—C11—C12 0.6 (3)
C4—C9—C8—C7 1.4 (2) C7—C13—C12—C11 −0.8 (3)
C13—C7—C8—N1 −2.6 (2) C10—C11—C12—C13 0.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O1i 0.82 1.90 2.7154 (12) 175
C3—H3···O1 0.93 2.47 2.809 (2) 102

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2269).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  2. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  3. Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o200. [DOI] [PMC free article] [PubMed]
  4. Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o201. [DOI] [PMC free article] [PubMed]
  5. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  6. Roopan, S. M., Khan, F. N., Subashini, R., Hathwar, V. R. & Ng, S. W. (2009a). Acta Cryst. E65, o2711. [DOI] [PMC free article] [PubMed]
  7. Roopan, S. M., Reddy, B. R., Kumar, A. S. & Khan, F. N. (2009b). Indian J. Heterocycl. Chem.19, 81–82.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810010767/pv2269sup1.cif

e-66-0o953-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010767/pv2269Isup2.hkl

e-66-0o953-Isup2.hkl (106KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES