Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 13;66(Pt 4):m408–m409. doi: 10.1107/S1600536810003570

Bis[4-(2-carbamoylhydrazin-1-yl­idene-κ2 N 1,O)-5-hydroxy­methyl-2-methyl­pyridinium-3-olato-κO 3]cobalt(II) dinitrate dihydrate

Dragoslav Vidovic a,*, Violeta Jevtovic b
PMCID: PMC2984000  PMID: 21580508

Abstract

The asymmetric unit of the title compound, [Co(C9H12N4O3)2](NO3)2·2H2O, consists of a discrete cationic [Co(PLSC)2]2+ complex unit [PLSC is 4-(2-carbamoylhydrazin-1-yl­idene)-5-hydroxy­methyl-2-methyl­pyridinium-3-ol­ato], two NO3 and two water mol­ecules. The two tridentate PLSC ligands of the cation are zwitterions related to each other by a non-crystallographic C 2 axis. The CoII ion is in a disorted octa­hedral coordination environment. The crystal structure is composed of alternating NO3/H2O and complex layers supported by extensive C—H⋯O, N—H⋯O and N—H⋯N hydrogen bonding.

Related literature

For the preparation and structure of other complexes incorporating PLSC ligands, see for example: Poleti et al. (2003); Leovac et al. (2007a ); Jacimovic et al. (2007); Knezevic et al. (2003). For the preparation and structures of similar complexes incorporating thio­semicarbazone (TSC) ligands, see: Belicchi Ferrari et al. (1998); Leovac et al. (2007b ). For background to the biological acitiviy of semicarbazones and thio­semicarbazones, see: West et al. (1991). For puckering parameters, see: Cremer & Pople (1975). For the Chebychev weighting scheme, see: Prince (1982); Watkin (1994).graphic file with name e-66-0m408-scheme1.jpg

Experimental

Crystal data

  • [Co(C9H12N4O3)2](NO3)2·2H2O

  • M r = 667.41

  • Monoclinic, Inline graphic

  • a = 11.0358 (1) Å

  • b = 18.4859 (2) Å

  • c = 13.8380 (1) Å

  • β = 106.5705 (6)°

  • V = 2705.80 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 150 K

  • 0.38 × 0.08 × 0.03 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) T min = 0.92, T max = 0.98

  • 38405 measured reflections

  • 5212 independent reflections

  • 4121 reflections with I > 2σ(I)

  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.041

  • S = 1.14

  • 5212 reflections

  • 389 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810003570/lh2980sup1.cif

e-66-0m408-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003570/lh2980Isup2.hkl

e-66-0m408-Isup2.hkl (306.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H71⋯O11 0.94 2.33 2.992 (3) 127
C17—H172⋯O11i 0.97 2.58 3.331 (3) 135
C22—H221⋯O2ii 0.93 2.35 3.153 (3) 144
N27—H271⋯O35iii 0.86 2.18 2.950 (3) 149
N27—H271⋯N36iii 0.86 2.57 3.400 (3) 163
N27—H271⋯O37iii 0.86 2.27 2.995 (3) 142
C30—H301⋯O37iv 0.97 2.49 3.369 (3) 151
O11—H325⋯O16i 0.82 2.00 2.783 (3) 159
O11—H325⋯O18i 0.82 2.59 3.132 (3) 125
O39—H11⋯O40 0.84 2.01 2.851 (3) 175
O31—H17⋯O42v 0.81 1.95 2.718 (3) 158
C17—H23⋯O40 0.96 2.59 3.391 (3) 141
O39—H45⋯O31vi 0.85 2.05 2.892 (3) 171
O34—H7⋯O11vii 0.83 1.96 2.767 (3) 164
O34—H19⋯O25 0.83 2.06 2.852 (3) 158
N13—H131⋯O40 0.75 2.22 2.963 (3) 169
N13—H131⋯O42 0.75 2.38 2.971 (3) 136
N5—H2⋯O38i 0.86 1.93 2.789 (3) 174
N4—H3⋯O37viii 0.86 2.09 2.948 (3) 174
N33—H4⋯O39ix 0.86 2.08 2.893 (3) 158
N33—H5⋯O34ii 0.88 2.06 2.874 (3) 153
N4—H6⋯O35i 0.88 2.09 2.967 (3) 174
N20—H9⋯O34ii 0.86 2.21 2.946 (3) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic.

Acknowledgments

The authors acknowledge the Oxford Chemical Crystallography Service for the use of the instrumentation and the Chemical Crystallography Research Group for helpful discussions.

supplementary crystallographic information

Comment

Semicarbazones (SC) and thiosemicarbazones (TSC) are excellent chelating ligands of different denticity that possess a broad range of biological activity as antifungal, anti-viral, anti-malarian and anti-tumour agents (West et al., 1991). The synthetic, structural as well as the biological activity of TSC-based ligands have been explored to a greater extent than their SC-based analogues. In fact, only a handful of reports have been published revealing the syntheses and structures of complexes incorporating 3–hydroxy–5–hydroxymethyl–2–methyl– pyridine–4–carbaldehyde semicarbazone (PLSC) ligand (see for example Knezevic et al., 2003) and all the reports describe complexes incorporating one PLSC ligand except for a report by Leovac et al., (2007b), which includes the synthetic and structural descriptions of a complex with two PTSC ligands in its coordination sphere. It is worth noting that PLSC ligand can adopt three different forms in the coordination sphere of a transition metal namely neutral (but zwitterionic) H2L, monoanionic HL- (pyridinium deprotonation) and dianionic L2- (both pyridinium and hydrazine deprotonation) forms (see Fig. 1).

Herein, we report the second PLSC-based complex ([Co(H2L)2].2NO3.2H2O, 1 (Figure 2), which contains two PLSC ligands in its coordination sphere. However, complex 1 includes both PLSC ligands in their neutral zwitterionic forms while in the corresponding complex reported by Leovac et al., (2007b) both ligands are in their monodeprotonated forms HL-. Thus, the title complex 1 is the first bis-PLSC-based complex that contains neutral PLSC ligands.

The molecular structure for 1 is shown in Fig. 2 and it contains a discrete dicationic unit [Co(H2L)2]2+, two NO3- anions and two H2O molecules. The crystal structure is connected by an extensive hydrogen-bonding network. The structure is best described as layered (Fig. 3) in which one layer consists of [Co(H2L)2]2+ units connected by alternating O16—H···O11 and C22—H···O2 hydrogen bonds additionally stabilized by a water molecule. The other layer consists of NO3- anions and water molecules that also form several hydrogen bonds with the first layer.

The values for certain bond lengths and angles of the ligand backbone (O(phenolic)–C–C–C–N (hydrazine)–NCO(carbonyl)) are crystallographic evidence used to determine which form (H2L, HL- or L2-) the PLSC ligand adopts once coordinated to a metal centre. For example, the first deprotonation of H2L, forming monoanionic form HL-, changes the carbonyl C—O from a double to a single bond and the hydrazine N—N from a single to a double bond. Further deprotonation to form L2- leads to a change in the C—N—C angle of the pyridine ring from 125° to 118°. Thus, the carbonyl C–O (1.249 (3) and 1.295 (3) Å) and N–N (1.368 (2) and 1.375 (2) Å) bond lengths, and the pyridine C–N–C angles (124.9 (2) Å and 124.19 (19) °) are the concrete evidence that the PTSC ligands are in their neutral (H2L) forms in complex 1.

The environment around the central cobalt cation in 1 can be best described as a distorted octahedral geometry. In fact, the N6–Co–N21 angle (171.12 (7)°) is somewhat similar to the theoretical 180° , but the other two, symmetry-related, O2–Co1–O16 (154,44 (7)° ), and O18–Co1–O25 (162.82 (6)° ) angles greatly deviate from linearity due to the chelation rings strain. Furthermore, the angles formed by the phenolic and carbonyl O atoms and Co (O2–Co1–O18 and O16–Co1–O25) differ from 90° (83.21 (6) and 101.92 (7)°, respectively) confirming a distorted octahedral geometry around the central Co cation.

The ring-puckering parameters defined for the atom sequence O16(O25)–C15(C24)–C8(C23)– C7(C22)–N6(N21)–Co are Θ = 64.8 (7)°, Q1=0.142 (2) Å and Q2= 0.067 (2) Å corresponding to a twist (1T2) conformation while the six-membered ring has and a total puckering amplitude of 0.1572 (18) Å corresponding to a skew (1S2) conformation (Cremer & Pople , 1975). The O16(25) atoms are the only atoms in the chelate ligand which exhibit strong H bonding interactions with O11 of the NO3- anions. The geometry of NO3- groups do not deviate from the usual literature values and the summary of the H bonding (O–H···O, N—H···O and C—H···O) in 1 are given in Table 1.

Experimental

The title complex was prepared by the reaction of Co(NO3)2 .6H2O and PLSC in a 1:1 molar ratio, using warm H2O as the solvent. Brown single crystals of 1 were obtained after allowing the reaction mixture to stand overnight.

Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularise their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2-1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

A three term Chebychev polynomial weighting scheme was applied (Watkin, 1994; Prince, 1982).

Figures

Fig. 1.

Fig. 1.

Different forms of the PLSC ligand.

Fig. 2.

Fig. 2.

The asymmetric unit of 1. The thermal ellipsoids are drawn at the 50% probability level. H atoms are not shown.

Fig. 3.

Fig. 3.

Crystal packing diagram of 1 viewed along the z axis showing the layered motif. H atoms are not shown.

Crystal data

[Co(C9H12N4O3)2](NO3)2·2H2O F(000) = 1380
Mr = 667.41 Dx = 1.638 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6300 reflections
a = 11.0358 (1) Å θ = 5–27°
b = 18.4859 (2) Å µ = 0.72 mm1
c = 13.8380 (1) Å T = 150 K
β = 106.5705 (6)° Block, green
V = 2705.80 (4) Å3 0.38 × 0.08 × 0.03 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 4121 reflections with I > 2σ(I)
graphite Rint = 0.056
ω scans θmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) h = −14→14
Tmin = 0.92, Tmax = 0.98 k = −23→23
38405 measured reflections l = −17→17
6133 independent reflections

Refinement

Refinement on F Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.444 0.165 0.244
wR(F2) = 0.041 (Δ/σ)max = 0.001
S = 1.14 Δρmax = 0.56 e Å3
5212 reflections Δρmin = −0.42 e Å3
389 parameters Extinction correction: Larson (1970), Equation 22
0 restraints Extinction coefficient: 80 (17)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.97214 (3) 0.479038 (15) 0.21508 (2) 0.0178
O2 1.10949 (15) 0.41005 (8) 0.18293 (11) 0.0221
C3 1.1436 (2) 0.35913 (12) 0.24402 (16) 0.0197
N4 1.22358 (19) 0.30776 (11) 0.23500 (15) 0.0266
N5 1.09857 (18) 0.35397 (10) 0.32629 (14) 0.0237
N6 1.01658 (17) 0.40702 (10) 0.33633 (13) 0.0189
C7 0.9609 (2) 0.39890 (12) 0.40564 (16) 0.0191
C8 0.8744 (2) 0.45254 (11) 0.42558 (16) 0.0183
C9 0.8127 (2) 0.43675 (12) 0.50011 (16) 0.0200
C10 0.8221 (2) 0.36423 (12) 0.55277 (17) 0.0232
O11 0.94816 (15) 0.34273 (8) 0.60528 (11) 0.0235
C12 0.7357 (2) 0.48771 (12) 0.52394 (17) 0.0229
N13 0.71667 (17) 0.55170 (10) 0.47433 (14) 0.0226
C14 0.7688 (2) 0.56970 (12) 0.40180 (16) 0.0201
C15 0.85115 (19) 0.52005 (12) 0.37386 (15) 0.0186
O16 0.90135 (15) 0.54119 (8) 0.30417 (12) 0.0230
C17 0.7403 (2) 0.64164 (12) 0.35176 (18) 0.0256
O18 1.11612 (15) 0.55823 (9) 0.23239 (11) 0.0246
C19 1.1000 (2) 0.59940 (12) 0.15863 (16) 0.0195
N20 0.99748 (17) 0.59111 (10) 0.07567 (14) 0.0211
N21 0.91416 (17) 0.53710 (9) 0.08134 (13) 0.0187
C22 0.8162 (2) 0.52824 (12) 0.00484 (16) 0.0191
C23 0.7192 (2) 0.47389 (12) 0.00103 (16) 0.0197
C24 0.7303 (2) 0.42092 (12) 0.07771 (17) 0.0212
O25 0.82772 (15) 0.41181 (8) 0.15522 (12) 0.0231
C26 0.6286 (2) 0.37144 (13) 0.06785 (18) 0.0271
N27 0.52905 (19) 0.37585 (12) −0.01369 (16) 0.0308
C28 0.5171 (2) 0.42374 (14) −0.08929 (18) 0.0288
C29 0.6111 (2) 0.47329 (13) −0.08471 (16) 0.0225
C30 0.5993 (2) 0.52333 (13) −0.17260 (16) 0.0253
O31 0.49006 (17) 0.50463 (10) −0.25181 (14) 0.0361
C32 0.6314 (3) 0.31578 (15) 0.1459 (2) 0.0380
N33 1.17911 (19) 0.65324 (11) 0.15436 (15) 0.0266
O34 0.92284 (17) 0.30192 (9) 0.05176 (13) 0.0298
O35 0.71622 (18) 0.80490 (10) 0.60566 (13) 0.0335
N36 0.75110 (18) 0.79336 (10) 0.52883 (14) 0.0225
O37 0.68648 (16) 0.81769 (9) 0.44575 (12) 0.0291
O38 0.85047 (15) 0.75880 (9) 0.53404 (13) 0.0298
O39 0.41254 (18) 0.62823 (12) 0.31113 (15) 0.0467
O40 0.5576 (2) 0.67311 (12) 0.50711 (15) 0.0484
N41 0.51580 (19) 0.64733 (13) 0.57582 (15) 0.0311
O42 0.5441 (2) 0.58280 (11) 0.59929 (16) 0.0453
O43 0.4521 (2) 0.68264 (14) 0.61762 (18) 0.0566
H71 0.9774 0.3573 0.4460 0.0228*
H101 0.7720 0.3664 0.6016 0.0279*
H102 0.7876 0.3265 0.5016 0.0267*
H121 0.6942 0.4791 0.5765 0.0442*
H172 0.8136 0.6724 0.3747 0.0384*
H173 0.7197 0.6360 0.2794 0.0387*
H221 0.8066 0.5589 −0.0502 0.0232*
H271 0.4677 0.3462 −0.0184 0.0362*
H301 0.5918 0.5725 −0.1507 0.0287*
H302 0.6725 0.5194 −0.1970 0.0290*
H321 0.5552 0.2872 0.1270 0.0565*
H322 0.6385 0.3400 0.2085 0.0563*
H323 0.7039 0.2852 0.1537 0.0561*
H325 0.9802 0.3770 0.6409 0.0357*
H11 0.4517 0.6415 0.3701 0.0682*
H17 0.4888 0.5336 −0.2964 0.0494*
H23 0.6697 0.6643 0.3664 0.0389*
H45 0.4494 0.5912 0.2972 0.0683*
H7 0.9433 0.2609 0.0759 0.0456*
H19 0.9005 0.3256 0.0950 0.0455*
H324 0.4444 0.4228 −0.1444 0.0326*
H131 0.6742 0.5791 0.4884 0.0126*
H2 1.1172 0.3178 0.3671 0.0294*
H3 1.2527 0.3079 0.1833 0.0331*
H4 1.2454 0.6582 0.2043 0.0307*
H5 1.1634 0.6795 0.0993 0.0304*
H6 1.2462 0.2740 0.2810 0.0331*
H9 0.9850 0.6186 0.0235 0.0258*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.02145 (15) 0.01664 (15) 0.01580 (14) 0.00014 (12) 0.00608 (10) 0.00114 (12)
O2 0.0268 (8) 0.0207 (8) 0.0212 (8) 0.0020 (6) 0.0105 (6) 0.0033 (6)
C3 0.0217 (11) 0.0196 (10) 0.0184 (10) −0.0021 (8) 0.0069 (8) −0.0006 (8)
N4 0.0329 (11) 0.0264 (10) 0.0243 (10) 0.0087 (9) 0.0145 (8) 0.0036 (8)
N5 0.0311 (10) 0.0208 (9) 0.0223 (9) 0.0101 (8) 0.0127 (8) 0.0064 (8)
N6 0.0211 (9) 0.0188 (9) 0.0178 (9) 0.0039 (7) 0.0071 (7) 0.0009 (7)
C7 0.0238 (11) 0.0176 (10) 0.0164 (10) 0.0019 (8) 0.0062 (8) 0.0022 (8)
C8 0.0186 (10) 0.0196 (10) 0.0167 (10) −0.0011 (8) 0.0050 (8) −0.0021 (8)
C9 0.0193 (10) 0.0224 (11) 0.0185 (10) −0.0027 (9) 0.0057 (8) −0.0014 (9)
C10 0.0253 (11) 0.0230 (11) 0.0237 (11) −0.0030 (9) 0.0107 (9) 0.0013 (9)
O11 0.0276 (8) 0.0198 (7) 0.0226 (8) −0.0004 (6) 0.0064 (6) −0.0011 (6)
C12 0.0226 (11) 0.0268 (11) 0.0211 (11) −0.0017 (9) 0.0091 (9) 0.0013 (9)
N13 0.0198 (9) 0.0240 (9) 0.0254 (10) 0.0046 (8) 0.0089 (8) −0.0033 (8)
C14 0.0191 (10) 0.0209 (10) 0.0191 (10) −0.0022 (8) 0.0036 (8) −0.0036 (8)
C15 0.0195 (10) 0.0194 (10) 0.0167 (10) −0.0013 (9) 0.0052 (8) −0.0021 (9)
O16 0.0298 (8) 0.0180 (7) 0.0241 (8) 0.0012 (6) 0.0126 (7) 0.0028 (6)
C17 0.0278 (12) 0.0213 (11) 0.0279 (12) 0.0040 (9) 0.0083 (9) 0.0009 (9)
O18 0.0267 (8) 0.0256 (8) 0.0206 (8) −0.0039 (7) 0.0052 (6) 0.0002 (7)
C19 0.0205 (10) 0.0186 (10) 0.0202 (10) −0.0003 (8) 0.0069 (8) −0.0015 (8)
N20 0.0225 (9) 0.0188 (9) 0.0213 (9) −0.0057 (7) 0.0052 (7) 0.0038 (7)
N21 0.0206 (9) 0.0167 (9) 0.0203 (9) −0.0014 (7) 0.0080 (7) −0.0002 (7)
C22 0.0209 (10) 0.0203 (10) 0.0173 (10) 0.0004 (9) 0.0073 (8) 0.0014 (8)
C23 0.0200 (10) 0.0202 (10) 0.0195 (10) 0.0006 (9) 0.0069 (8) −0.0020 (9)
C24 0.0215 (11) 0.0189 (10) 0.0240 (11) −0.0003 (9) 0.0078 (9) −0.0021 (9)
O25 0.0245 (8) 0.0198 (8) 0.0236 (8) −0.0008 (6) 0.0045 (6) 0.0030 (6)
C26 0.0262 (12) 0.0242 (11) 0.0318 (12) −0.0044 (10) 0.0099 (10) 0.0003 (10)
N27 0.0240 (10) 0.0326 (11) 0.0350 (11) −0.0106 (9) 0.0074 (9) 0.0000 (9)
C28 0.0256 (12) 0.0330 (13) 0.0260 (12) −0.0037 (10) 0.0044 (10) −0.0007 (10)
C29 0.0209 (10) 0.0261 (11) 0.0213 (10) −0.0020 (9) 0.0074 (9) −0.0039 (9)
C30 0.0243 (11) 0.0282 (12) 0.0196 (10) −0.0045 (10) 0.0003 (9) −0.0004 (9)
O31 0.0329 (9) 0.0399 (10) 0.0267 (8) −0.0085 (8) −0.0057 (7) 0.0034 (8)
C32 0.0332 (14) 0.0317 (13) 0.0471 (16) −0.0090 (11) 0.0083 (12) 0.0121 (12)
N33 0.0265 (10) 0.0259 (10) 0.0250 (10) −0.0084 (8) 0.0035 (8) 0.0008 (8)
O34 0.0397 (10) 0.0207 (8) 0.0301 (9) 0.0015 (7) 0.0116 (8) 0.0012 (7)
O35 0.0469 (11) 0.0349 (10) 0.0232 (8) 0.0128 (8) 0.0175 (8) 0.0032 (7)
N36 0.0275 (10) 0.0190 (9) 0.0227 (10) 0.0016 (8) 0.0101 (8) 0.0030 (7)
O37 0.0326 (9) 0.0322 (9) 0.0234 (8) 0.0104 (7) 0.0094 (7) 0.0086 (7)
O38 0.0265 (9) 0.0322 (9) 0.0323 (9) 0.0096 (7) 0.0111 (7) 0.0091 (7)
O39 0.0335 (10) 0.0616 (14) 0.0390 (11) 0.0035 (9) 0.0009 (8) −0.0149 (10)
O40 0.0599 (13) 0.0568 (13) 0.0304 (10) −0.0153 (11) 0.0161 (9) 0.0023 (9)
N41 0.0272 (11) 0.0426 (13) 0.0229 (10) 0.0009 (9) 0.0060 (8) −0.0030 (9)
O42 0.0497 (12) 0.0437 (12) 0.0462 (12) 0.0081 (10) 0.0199 (10) 0.0034 (9)
O43 0.0491 (13) 0.0671 (15) 0.0602 (14) 0.0178 (11) 0.0264 (11) −0.0122 (12)

Geometric parameters (Å, °)

Co1—O2 2.1228 (15) C19—N33 1.336 (3)
Co1—N6 2.0878 (18) N20—N21 1.375 (2)
Co1—O16 2.0000 (15) N20—H9 0.861
Co1—O18 2.1232 (16) N21—C22 1.290 (3)
Co1—N21 2.0763 (18) C22—C23 1.458 (3)
Co1—O25 2.0044 (16) C22—H221 0.931
O2—C3 1.249 (3) C23—C24 1.423 (3)
C3—N4 1.327 (3) C23—C29 1.422 (3)
C3—N5 1.369 (3) C24—O25 1.295 (3)
N4—H3 0.864 C24—C26 1.424 (3)
N4—H6 0.875 C26—N27 1.334 (3)
N5—N6 1.368 (2) C26—C32 1.485 (3)
N5—H2 0.861 N27—C28 1.348 (3)
N6—C7 1.287 (3) N27—H271 0.859
C7—C8 1.457 (3) C28—C29 1.372 (3)
C7—H71 0.937 C28—H324 0.935
C8—C9 1.419 (3) C29—C30 1.504 (3)
C8—C15 1.425 (3) C30—O31 1.421 (3)
C9—C10 1.515 (3) C30—H301 0.970
C9—C12 1.370 (3) C30—H302 0.964
C10—O11 1.430 (3) O31—H17 0.814
C10—H101 0.988 C32—H321 0.964
C10—H102 0.990 C32—H322 0.959
O11—H325 0.818 C32—H323 0.961
C12—N13 1.354 (3) N33—H4 0.856
C12—H121 0.977 N33—H5 0.878
N13—C14 1.334 (3) O34—H7 0.834
N13—H131 0.753 O34—H19 0.833
C14—C15 1.421 (3) O35—N36 1.248 (2)
C14—C17 1.491 (3) N36—O37 1.251 (2)
C15—O16 1.302 (3) N36—O38 1.253 (2)
C17—H172 0.965 O39—H11 0.844
C17—H173 0.967 O39—H45 0.847
C17—H23 0.955 O40—N41 1.262 (3)
O18—C19 1.245 (3) N41—O42 1.252 (3)
C19—N20 1.371 (3) N41—O43 1.219 (3)
O2—Co1—N6 76.54 (6) C14—C17—H23 111.7
O2—Co1—O16 154.44 (7) H172—C17—H23 109.2
N6—Co1—O16 85.09 (7) H173—C17—H23 107.6
O2—Co1—O18 83.21 (6) Co1—O18—C19 113.69 (14)
N6—Co1—O18 110.63 (7) O18—C19—N20 120.60 (19)
O16—Co1—O18 86.89 (6) O18—C19—N33 123.3 (2)
O2—Co1—N21 100.41 (6) N20—C19—N33 116.08 (19)
N6—Co1—N21 171.12 (7) C19—N20—N21 116.04 (17)
O16—Co1—N21 100.21 (7) C19—N20—H9 122.1
O18—Co1—N21 76.98 (6) N21—N20—H9 121.8
O2—Co1—O25 94.13 (6) Co1—N21—N20 112.65 (13)
N6—Co1—O25 85.04 (7) Co1—N21—C22 129.72 (15)
O16—Co1—O25 101.92 (7) N20—N21—C22 117.59 (18)
O18—Co1—O25 162.82 (6) N21—C22—C23 123.5 (2)
N21—Co1—O25 86.88 (7) N21—C22—H221 117.8
Co1—O2—C3 113.95 (13) C23—C22—H221 118.6
O2—C3—N4 123.8 (2) C22—C23—C24 122.8 (2)
O2—C3—N5 120.31 (19) C22—C23—C29 117.9 (2)
N4—C3—N5 115.94 (19) C24—C23—C29 119.3 (2)
C3—N4—H3 119.3 C23—C24—O25 125.6 (2)
C3—N4—H6 120.1 C23—C24—C26 118.2 (2)
H3—N4—H6 120.6 O25—C24—C26 116.2 (2)
C3—N5—N6 116.22 (18) Co1—O25—C24 129.50 (14)
C3—N5—H2 121.6 C24—C26—N27 118.6 (2)
N6—N5—H2 122.1 C24—C26—C32 121.5 (2)
Co1—N6—N5 112.70 (13) N27—C26—C32 119.9 (2)
Co1—N6—C7 128.37 (15) C26—N27—C28 124.9 (2)
N5—N6—C7 117.54 (18) C26—N27—H271 117.8
N6—C7—C8 122.68 (19) C28—N27—H271 117.4
N6—C7—H71 119.1 N27—C28—C29 119.8 (2)
C8—C7—H71 118.2 N27—C28—H324 119.4
C7—C8—C9 118.30 (19) C29—C28—H324 120.8
C7—C8—C15 122.33 (19) C23—C29—C28 119.2 (2)
C9—C8—C15 119.37 (19) C23—C29—C30 121.9 (2)
C8—C9—C10 123.38 (19) C28—C29—C30 118.9 (2)
C8—C9—C12 119.5 (2) C29—C30—O31 109.48 (19)
C10—C9—C12 117.05 (19) C29—C30—H301 108.6
C9—C10—O11 114.45 (18) O31—C30—H301 109.9
C9—C10—H101 108.5 C29—C30—H302 110.4
O11—C10—H101 108.5 O31—C30—H302 108.9
C9—C10—H102 108.7 H301—C30—H302 109.6
O11—C10—H102 106.7 C30—O31—H17 104.6
H101—C10—H102 110.0 C26—C32—H321 110.3
C10—O11—H325 106.4 C26—C32—H322 108.3
C9—C12—N13 119.7 (2) H321—C32—H322 109.9
C9—C12—H121 121.5 C26—C32—H323 109.5
N13—C12—H121 118.8 H321—C32—H323 110.0
C12—N13—C14 124.19 (19) H322—C32—H323 108.8
C12—N13—H131 118.4 C19—N33—H4 117.6
C14—N13—H131 117.4 C19—N33—H5 118.7
N13—C14—C15 119.4 (2) H4—N33—H5 123.5
N13—C14—C17 119.5 (2) H7—O34—H19 107.0
C15—C14—C17 121.12 (19) O35—N36—O37 119.20 (19)
C8—C15—C14 117.81 (19) O35—N36—O38 121.04 (19)
C8—C15—O16 125.55 (19) O37—N36—O38 119.76 (18)
C14—C15—O16 116.61 (19) H11—O39—H45 108.0
Co1—O16—C15 127.43 (14) O40—N41—O42 115.9 (2)
C14—C17—H172 109.0 O40—N41—O43 122.6 (2)
C14—C17—H173 109.9 O42—N41—O43 121.4 (2)
H172—C17—H173 109.3

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H71···O11 0.94 2.33 2.992 (3) 127
C17—H172···O11i 0.97 2.58 3.331 (3) 135
C22—H221···O2ii 0.93 2.35 3.153 (3) 144
N27—H271···O35iii 0.86 2.18 2.950 (3) 149
N27—H271···N36iii 0.86 2.57 3.400 (3) 163
N27—H271···O37iii 0.86 2.27 2.995 (3) 142
C30—H301···O37iv 0.97 2.49 3.369 (3) 151
O11—H325···O16i 0.82 2.00 2.783 (3) 159
O11—H325···O18i 0.82 2.59 3.132 (3) 125
O39—H11···O40 0.84 2.01 2.851 (3) 175
O31—H17···O42v 0.81 1.95 2.718 (3) 158
C17—H23···O40 0.96 2.59 3.391 (3) 141
O39—H45···O31vi 0.85 2.05 2.892 (3) 171
O34—H7···O11vii 0.83 1.96 2.767 (3) 164
O34—H19···C24 0.83 2.54 3.149 (3) 131
O34—H19···O25 0.83 2.06 2.852 (3) 158
N13—H131···O40 0.75 2.22 2.963 (3) 169
N13—H131···O42 0.75 2.38 2.971 (3) 136
N5—H2···O38i 0.86 1.93 2.789 (3) 174
N4—H3···O37viii 0.86 2.09 2.948 (3) 174
N33—H4···O39ix 0.86 2.08 2.893 (3) 158
N33—H5···O34ii 0.88 2.06 2.874 (3) 153
N4—H6···O35i 0.88 2.09 2.967 (3) 174
N20—H9···O34ii 0.86 2.21 2.946 (3) 143

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, −y+1, −z; (iii) −x+1, y−1/2, −z+1/2; (iv) x, −y+3/2, z−1/2; (v) x, y, z−1; (vi) −x+1, −y+1, −z; (vii) x, −y+1/2, z−1/2; (viii) −x+2, y−1/2, −z+1/2; (ix) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2980).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Belicchi Ferrari, M., Gasparri Fava, G., Pelizzi, C., Pelosi, G. & Tarasconi, P. (1998). Inorg. Chim. Acta, 269, 297–301.
  3. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  5. Jacimovic, Z., Leovac, V., Giester, G., Tomic, Z. & Szecsenyi, K. (2007). J. Therm. Anal. Calorim.90, 549–555.
  6. Knezevic, N., Leovac, M., Jevtovic, V., Grguric-Sipka, S. & Sabo, T. (2003). Inorg. Chem. Commun.6, 561–563.
  7. Leovac, V., Jovanovic, Lj., Divjakovic, V., Pevec, A., Leban, I. & Armstrong, T. (2007a). Polyhedron, 26, 49–58.
  8. Leovac, V., Jovanovic, Lj., Jevtovic, V., Pelosi, G. & Bisceglie, F. (2007b). Polyhedron, 26, 2971–2978.
  9. Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Poleti, D., Karanović, L., Leovac, V. M. & Jevtović, V. S. (2003). Acta Cryst. C59, m73–m75. [DOI] [PubMed]
  12. Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science New York: Springer-Verlag.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Watkin, D. (1994). Acta Cryst. A50, 411–437.
  15. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.
  16. West, D. X., Padhye, S. B. & Sonawane, P. B. (1991). Struct. Bonding (Berlin), 76, 1–50.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810003570/lh2980sup1.cif

e-66-0m408-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003570/lh2980Isup2.hkl

e-66-0m408-Isup2.hkl (306.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES