Abstract
The asymmetric unit of the title compound, [Pt(CH3CN)2(C12H8N2)](ClO4)2, contains one half of a cationic PtII complex and pair of half perchlorate anions, one of which is disordered over two sites in a 0.53 (3):0.47 (3) ratio. The complex and anions are disposed about a crystallographic mirror plane parallel to the ac plane passing through the Pt and Cl atoms. In the complex, the PtII ion lies in a distorted square-planar environment defined by four N atoms of the chelating 1,10-phenanthroline ligand and two distinct acetonitrile molecules. The component ions interact by means of intermolecular C—H⋯O hydrogen bonds.
Related literature
For the synthesis of [PtCl2(phen)] (phen = 1,10-phenanthroline), see: Hodges & Rund (1975 ▶). For the crystal structure of [Pd(phen)(CH3CN)2](O3SCF3)2, see: Adrian et al. (2008 ▶).
Experimental
Crystal data
[Pt(C2H3N)2(C12H8N2)](ClO4)2
M r = 656.30
Orthorhombic,
a = 9.1407 (5) Å
b = 11.7822 (7) Å
c = 18.3215 (11) Å
V = 1973.2 (2) Å3
Z = 4
Mo Kα radiation
μ = 7.44 mm−1
T = 200 K
0.28 × 0.12 × 0.04 mm
Data collection
Bruker SMART 1000 CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000 ▶) T min = 0.763, T max = 1.000
11860 measured reflections
2043 independent reflections
1540 reflections with I > 2σ(I)
R int = 0.087
Refinement
R[F 2 > 2σ(F 2)] = 0.042
wR(F 2) = 0.100
S = 1.02
2043 reflections
176 parameters
18 restraints
H-atom parameters constrained
Δρmax = 2.23 e Å−3
Δρmin = −1.82 e Å−3
Data collection: SMART (Bruker, 2000 ▶); cell refinement: SAINT (Bruker, 2000 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶) and PLATON (Spek, 2009 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008299/pk2230sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008299/pk2230Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected bond angles (°).
| N2i—Pt1—N2 | 87.9 (3) |
| N1—Pt1—N1i | 81.9 (3) |
Symmetry code: (i)
.
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C1—H1⋯O6ii | 0.95 | 2.60 | 3.48 (2) | 155 |
| C3—H3⋯O2iii | 0.95 | 2.54 | 3.210 (8) | 127 |
| C3—H3⋯O3iv | 0.95 | 2.54 | 3.486 (11) | 178 |
| C7—H7A⋯O6ii | 0.98 | 2.39 | 3.066 (18) | 126 |
| C7—H7B⋯O3v | 0.98 | 2.41 | 3.143 (11) | 131 |
Symmetry codes: (ii)
; (iii)
; (iv)
; (v)
.
Acknowledgments
This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094056).
supplementary crystallographic information
Comment
The asymmetric unit of the title compound, [Pt(phen)(CH3CN)2](ClO4)2 (where phen is 1,10-phenanthroline, C12H8N2), contains one half of a cationic PtII complex and half a perchlorate anion (Fig. 1). The complex and anions are disposed about a crystallographic mirror plane parallel to the ac plane passing through the Pt and Cl atoms (Fig. 2). In the complex, the PtII ion lies in a distorted square-planar environment defined by four N atoms of the chelating 1,10-phenanthroline ligand and two distinct acetonitrile molecules. The main contribution to the distortion is the tight N1—Pt1—N1i [symmetry code: (i) x,-y+1/2,z] chelate angle [81.9 (3)°], which results in non-linear trans arrangement [<N1—Pt1—N2i = 177.0 (2)°]. The Pt—N bond lengths are almost equal [Pt1—N(phen): 2.001 (6) Å; Pt1—N(CH3CN): 1.994 (7) Å] (Table 1). The component ions interact by means of intermolecular C—H···O hydrogen bonds (Fig. 2 and Table 2).
Experimental
To a solution of AgClO4.H2O (0.1006 g, 0.446 mmol) in CH3CN (70 ml) was added [PtCl2(phen)] (0.0996 g, 0.223 mmol) and refluxed for 7 h. The mixture was filtered to remove AgCl and then the resulting solution was dried under vacuum. The residue was washed with CH2Cl2 and dried at 50 °C, to give a pale gray powder (0.1401 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.
Refinement
H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 (aromatic) or 0.98 Å (CH3) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)]. The highest peak (2.23 e Å-3) and the deepest hole (-1.82 e Å-3) in the difference Fourier map are located 0.86 and 0.96 Å, respectively, from the atom Pt1. The O atoms (O4, O5 and O6) of the ClO4 anion displayed relatively large displacement factors so that the anion appears to be partially disordered. The anion was modelled as disordered over two sites with a major site occupancy factor of 0.53 (3). A total of 18 restraints were used in the refinement using the following SHELXL97 (Sheldrick, 2008) commands: SAME 0.020 Cl2' > O6' and DELU 0.010 Cl2 > O6'. In addition, the displacement parameters of the major and minor component atoms Cl2 Cl2' were constrained using the EADP command.
Figures
Fig. 1.
The structure of the title compound with displacement ellipsoids drawn at the 50% probability level for non-H atoms. Unlabelled atoms are related to labelled atoms by the symmetry operation and the bonds of the minor components of the disordered ClO4 anion are shown with dashed lines.
Fig. 2.
View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
Crystal data
| [Pt(C2H3N)2(C12H8N2)](ClO4)2 | F(000) = 1256 |
| Mr = 656.30 | Dx = 2.209 Mg m−3 |
| Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ac 2n | Cell parameters from 3403 reflections |
| a = 9.1407 (5) Å | θ = 2.2–25.0° |
| b = 11.7822 (7) Å | µ = 7.44 mm−1 |
| c = 18.3215 (11) Å | T = 200 K |
| V = 1973.2 (2) Å3 | Rod, colorless |
| Z = 4 | 0.28 × 0.12 × 0.04 mm |
Data collection
| Bruker SMART 1000 CCD diffractometer | 2043 independent reflections |
| Radiation source: fine-focus sealed tube | 1540 reflections with I > 2σ(I) |
| graphite | Rint = 0.087 |
| φ and ω scans | θmax = 26.0°, θmin = 2.1° |
| Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −11→7 |
| Tmin = 0.763, Tmax = 1.000 | k = −14→14 |
| 11860 measured reflections | l = −22→21 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.100 | H-atom parameters constrained |
| S = 1.02 | w = 1/[σ2(Fo2) + (0.0514P)2] where P = (Fo2 + 2Fc2)/3 |
| 2043 reflections | (Δ/σ)max < 0.001 |
| 176 parameters | Δρmax = 2.23 e Å−3 |
| 18 restraints | Δρmin = −1.82 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Pt1 | 0.96551 (5) | 0.2500 | 0.10603 (2) | 0.02158 (17) | |
| N1 | 0.8473 (6) | 0.1387 (5) | 0.0483 (3) | 0.0219 (14) | |
| N2 | 1.0774 (7) | 0.1326 (5) | 0.1611 (4) | 0.0278 (16) | |
| C1 | 0.8490 (8) | 0.0253 (6) | 0.0516 (4) | 0.0264 (18) | |
| H1 | 0.9141 | −0.0111 | 0.0845 | 0.032* | |
| C2 | 0.7580 (9) | −0.0405 (7) | 0.0081 (5) | 0.034 (2) | |
| H2 | 0.7628 | −0.1209 | 0.0110 | 0.041* | |
| C3 | 0.6622 (9) | 0.0097 (7) | −0.0387 (5) | 0.031 (2) | |
| H3 | 0.5999 | −0.0355 | −0.0682 | 0.038* | |
| C4 | 0.6557 (8) | 0.1302 (7) | −0.0431 (5) | 0.0304 (19) | |
| C5 | 0.7512 (7) | 0.1902 (6) | 0.0018 (4) | 0.0229 (17) | |
| C6 | 0.5587 (9) | 0.1932 (8) | −0.0901 (4) | 0.034 (2) | |
| H6 | 0.4937 | 0.1535 | −0.1215 | 0.041* | |
| C7 | 1.2397 (10) | 0.0000 (8) | 0.2375 (5) | 0.040 (2) | |
| H7A | 1.2170 | −0.0791 | 0.2254 | 0.061* | |
| H7B | 1.2217 | 0.0129 | 0.2896 | 0.061* | |
| H7C | 1.3427 | 0.0154 | 0.2264 | 0.061* | |
| C8 | 1.1474 (8) | 0.0750 (6) | 0.1947 (4) | 0.0255 (18) | |
| Cl1 | 0.4808 (3) | 0.2500 | 0.14861 (16) | 0.0273 (6) | |
| O1 | 0.3890 (9) | 0.2500 | 0.2122 (5) | 0.040 (2) | |
| O2 | 0.3939 (10) | 0.2500 | 0.0837 (4) | 0.040 (2) | |
| O3 | 0.5699 (7) | 0.1506 (6) | 0.1490 (4) | 0.0515 (19) | |
| Cl2 | 0.430 (2) | 0.7500 | 0.341 (4) | 0.033 (2) | 0.53 (3) |
| O4 | 0.272 (2) | 0.7500 | 0.340 (2) | 0.080 (10) | 0.53 (3) |
| O5 | 0.468 (3) | 0.7500 | 0.4176 (11) | 0.088 (10) | 0.53 (3) |
| O6 | 0.4825 (19) | 0.6495 (12) | 0.3106 (12) | 0.077 (8) | 0.53 (3) |
| Cl2' | 0.461 (3) | 0.7500 | 0.340 (4) | 0.033 (2) | 0.47 (3) |
| O4' | 0.312 (3) | 0.7500 | 0.365 (2) | 0.068 (10) | 0.47 (3) |
| O5' | 0.453 (3) | 0.7500 | 0.2625 (11) | 0.111 (15) | 0.47 (3) |
| O6' | 0.5367 (19) | 0.6564 (15) | 0.3651 (15) | 0.073 (8) | 0.47 (3) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Pt1 | 0.0226 (3) | 0.0172 (2) | 0.0250 (3) | 0.000 | −0.00007 (19) | 0.000 |
| N1 | 0.027 (4) | 0.014 (3) | 0.025 (4) | −0.002 (2) | 0.003 (3) | −0.003 (3) |
| N2 | 0.032 (4) | 0.020 (3) | 0.031 (4) | −0.005 (3) | −0.005 (3) | −0.003 (3) |
| C1 | 0.026 (4) | 0.022 (4) | 0.031 (5) | 0.004 (3) | 0.001 (3) | −0.005 (3) |
| C2 | 0.038 (5) | 0.020 (4) | 0.044 (6) | −0.006 (4) | 0.006 (4) | −0.006 (4) |
| C3 | 0.031 (5) | 0.030 (5) | 0.034 (5) | −0.012 (4) | 0.003 (4) | −0.010 (4) |
| C4 | 0.028 (5) | 0.033 (5) | 0.030 (5) | 0.001 (3) | −0.004 (4) | −0.006 (4) |
| C5 | 0.019 (4) | 0.027 (4) | 0.022 (4) | 0.000 (3) | 0.003 (3) | 0.002 (3) |
| C6 | 0.037 (5) | 0.057 (6) | 0.008 (4) | −0.011 (4) | 0.000 (3) | −0.005 (3) |
| C7 | 0.047 (6) | 0.038 (5) | 0.036 (6) | 0.012 (4) | −0.012 (4) | 0.002 (4) |
| C8 | 0.025 (4) | 0.020 (4) | 0.032 (5) | −0.001 (3) | −0.002 (4) | 0.000 (4) |
| Cl1 | 0.0272 (14) | 0.0256 (14) | 0.0292 (17) | 0.000 | −0.0033 (12) | 0.000 |
| O1 | 0.038 (5) | 0.039 (5) | 0.042 (6) | 0.000 | 0.004 (4) | 0.000 |
| O2 | 0.055 (6) | 0.031 (5) | 0.035 (5) | 0.000 | −0.014 (4) | 0.000 |
| O3 | 0.058 (4) | 0.055 (4) | 0.041 (4) | 0.033 (3) | −0.003 (3) | −0.003 (3) |
| Cl2 | 0.030 (7) | 0.0226 (15) | 0.047 (3) | 0.000 | −0.003 (11) | 0.000 |
| O4 | 0.031 (9) | 0.077 (18) | 0.13 (3) | 0.000 | −0.017 (11) | 0.000 |
| O5 | 0.11 (2) | 0.09 (2) | 0.063 (10) | 0.000 | −0.040 (13) | 0.000 |
| O6 | 0.072 (11) | 0.034 (8) | 0.124 (19) | 0.002 (8) | 0.025 (12) | −0.031 (10) |
| Cl2' | 0.030 (7) | 0.0226 (15) | 0.047 (3) | 0.000 | −0.003 (11) | 0.000 |
| O4' | 0.023 (11) | 0.09 (2) | 0.09 (2) | 0.000 | 0.005 (13) | 0.000 |
| O5' | 0.09 (2) | 0.21 (4) | 0.034 (9) | 0.000 | −0.016 (11) | 0.000 |
| O6' | 0.057 (11) | 0.037 (10) | 0.12 (2) | 0.013 (8) | 0.007 (11) | 0.028 (12) |
Geometric parameters (Å, °)
| Pt1—N2i | 1.994 (7) | C6—H6 | 0.9500 |
| Pt1—N2 | 1.994 (7) | C7—C8 | 1.452 (11) |
| Pt1—N1 | 2.001 (6) | C7—H7A | 0.9800 |
| Pt1—N1i | 2.001 (6) | C7—H7B | 0.9800 |
| N1—C1 | 1.337 (9) | C7—H7C | 0.9800 |
| N1—C5 | 1.366 (9) | Cl1—O3i | 1.427 (6) |
| N2—C8 | 1.118 (9) | Cl1—O3 | 1.427 (6) |
| C1—C2 | 1.388 (11) | Cl1—O2 | 1.430 (9) |
| C1—H1 | 0.9500 | Cl1—O1 | 1.436 (9) |
| C2—C3 | 1.360 (12) | Cl2—O6ii | 1.40 (3) |
| C2—H2 | 0.9500 | Cl2—O6 | 1.40 (3) |
| C3—C4 | 1.424 (11) | Cl2—O5 | 1.44 (7) |
| C3—H3 | 0.9500 | Cl2—O4 | 1.44 (2) |
| C4—C5 | 1.392 (10) | Cl2'—O6'ii | 1.38 (3) |
| C4—C6 | 1.442 (11) | Cl2'—O6' | 1.38 (3) |
| C5—C5i | 1.410 (14) | Cl2'—O5' | 1.42 (8) |
| C6—C6i | 1.338 (19) | Cl2'—O4' | 1.44 (2) |
| N2i—Pt1—N2 | 87.9 (3) | C4—C6—H6 | 119.5 |
| N2i—Pt1—N1 | 177.0 (2) | C8—C7—H7A | 109.5 |
| N2—Pt1—N1 | 95.1 (2) | C8—C7—H7B | 109.5 |
| N2i—Pt1—N1i | 95.1 (2) | H7A—C7—H7B | 109.5 |
| N2—Pt1—N1i | 177.0 (2) | C8—C7—H7C | 109.5 |
| N1—Pt1—N1i | 81.9 (3) | H7A—C7—H7C | 109.5 |
| C1—N1—C5 | 118.6 (6) | H7B—C7—H7C | 109.5 |
| C1—N1—Pt1 | 128.7 (5) | N2—C8—C7 | 179.2 (9) |
| C5—N1—Pt1 | 112.7 (5) | O3i—Cl1—O3 | 110.4 (6) |
| C8—N2—Pt1 | 173.4 (6) | O3i—Cl1—O2 | 108.7 (3) |
| N1—C1—C2 | 121.7 (7) | O3—Cl1—O2 | 108.7 (3) |
| N1—C1—H1 | 119.1 | O3i—Cl1—O1 | 109.3 (3) |
| C2—C1—H1 | 119.1 | O3—Cl1—O1 | 109.3 (3) |
| C3—C2—C1 | 120.3 (8) | O2—Cl1—O1 | 110.5 (6) |
| C3—C2—H2 | 119.9 | O6ii—Cl2—O6 | 116 (4) |
| C1—C2—H2 | 119.9 | O6ii—Cl2—O5 | 108 (3) |
| C2—C3—C4 | 119.7 (7) | O6—Cl2—O5 | 108 (3) |
| C2—C3—H3 | 120.1 | O6ii—Cl2—O4 | 110 (2) |
| C4—C3—H3 | 120.1 | O6—Cl2—O4 | 110 (2) |
| C5—C4—C3 | 116.5 (7) | O5—Cl2—O4 | 105 (3) |
| C5—C4—C6 | 118.5 (7) | O6'ii—Cl2'—O6' | 106 (4) |
| C3—C4—C6 | 125.0 (8) | O6'ii—Cl2'—O5' | 111 (3) |
| N1—C5—C4 | 123.1 (7) | O6'—Cl2'—O5' | 111 (3) |
| N1—C5—C5i | 116.3 (4) | O6'ii—Cl2'—O4' | 111 (3) |
| C4—C5—C5i | 120.5 (5) | O6'—Cl2'—O4' | 111 (3) |
| C6i—C6—C4 | 121.0 (5) | O5'—Cl2'—O4' | 106 (4) |
| C6i—C6—H6 | 119.5 | ||
| N2—Pt1—N1—C1 | 1.5 (7) | C1—N1—C5—C4 | −0.7 (11) |
| N1i—Pt1—N1—C1 | −178.3 (5) | Pt1—N1—C5—C4 | −179.0 (6) |
| N2—Pt1—N1—C5 | 179.6 (5) | C1—N1—C5—C5i | 178.5 (5) |
| N1i—Pt1—N1—C5 | −0.2 (6) | Pt1—N1—C5—C5i | 0.2 (5) |
| C5—N1—C1—C2 | 1.2 (11) | C3—C4—C5—N1 | −0.1 (11) |
| Pt1—N1—C1—C2 | 179.2 (6) | C6—C4—C5—N1 | 179.9 (7) |
| N1—C1—C2—C3 | −1.0 (12) | C3—C4—C5—C5i | −179.2 (5) |
| C1—C2—C3—C4 | 0.2 (12) | C6—C4—C5—C5i | 0.8 (9) |
| C2—C3—C4—C5 | 0.3 (12) | C5—C4—C6—C6i | −0.8 (9) |
| C2—C3—C4—C6 | −179.7 (8) | C3—C4—C6—C6i | 179.2 (6) |
Symmetry codes: (i) x, −y+1/2, z; (ii) x, −y+3/2, z.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C1—H1···O6iii | 0.95 | 2.60 | 3.48 (2) | 155 |
| C3—H3···O2iv | 0.95 | 2.54 | 3.210 (8) | 127 |
| C3—H3···O3v | 0.95 | 2.54 | 3.486 (11) | 178 |
| C7—H7A···O6iii | 0.98 | 2.39 | 3.066 (18) | 126 |
| C7—H7B···O3vi | 0.98 | 2.41 | 3.143 (11) | 131 |
Symmetry codes: (iii) x+1/2, −y+1/2, −z+1/2; (iv) −x+1, y−1/2, −z; (v) −x+1, −y, −z; (vi) x+1/2, y, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2230).
References
- Adrian, R. A., Broker, G. A., Tiekink, E. R. T. & Walmsley, J. A. (2008). Inorg. Chim. Acta, 361, 1261–1266. [DOI] [PMC free article] [PubMed]
- Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Hodges, K. D. & Rund, J. V. (1975). Inorg. Chem.14, 525–528.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008299/pk2230sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008299/pk2230Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


