Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 13;66(Pt 4):o813. doi: 10.1107/S1600536810008445

1-Bromo-2-chloro-4,5-dimethoxy­benzene

Yang Song a, Sean Parkin b, Hans-Joachim Lehmler c,*
PMCID: PMC2984005  PMID: 21580645

Abstract

The two meth­oxy groups of the title compound, C8H8BrClO2, are approximately coplanar with the benzene ring, the dihedral angles in all four mol­ecules in the asymmetric unit ranging from of 0.9 (3) to 12.3 (3)°. All four independent mol­ecules are disordered by different amounts about non-crystallographic twofold axes which nearly superimpose the Cl and Br sites.

Related literature

For similar structures of halogenated meth­oxy benzenes, see: Iimura et al. (1984); Rissanen et al. (1987, 1988a ,b ); Song et al. (2008, 2010a ,b ); Telu et al. (2008); Weller & Gerstner (1995); Wieczorek (1980). For general background to halogenated meth­oxy benzenes, see: Ballschmiter, (2003); Brownlee et al. (1993); Curtis et al. (1972); Pereira et al. (2000); Vlachos et al. (2007).graphic file with name e-66-0o813-scheme1.jpg

Experimental

Crystal data

  • C8H8BrClO2

  • M r = 251.50

  • Triclinic, Inline graphic

  • a = 9.9264 (2) Å

  • b = 9.9410 (2) Å

  • c = 19.7219 (5) Å

  • α = 75.9259 (8)°

  • β = 75.9323 (8)°

  • γ = 79.9479 (10)°

  • V = 1817.26 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.77 mm−1

  • T = 90 K

  • 0.22 × 0.22 × 0.20 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) T min = 0.360, T max = 0.385

  • 14754 measured reflections

  • 8202 independent reflections

  • 6065 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.070

  • S = 1.04

  • 8202 reflections

  • 471 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and local procedures.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810008445/ci5050sup1.cif

e-66-0o813-sup1.cif (30.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008445/ci5050Isup2.hkl

e-66-0o813-Isup2.hkl (401.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by grants ES05605, ES017425, ES013661 from the National Institute of Environmental Health Sciences, NIH (HJL), NSFC grant No. 20907037 from the National Science Fund of China (YS) and the Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education of China (YS).

supplementary crystallographic information

Comment

Halogenated methoxy benzenes are an important group of volatile organic pollutants (Ballschmiter, 2003) that cause off-flavors in water, fish, chicken and wine (Brownlee et al., 1993; Curtis et al., 1972; Pereira et al., 2000; Vlachos et al., 2007). Although the conformation of the methoxy groups relative to the aromatic ring system plays an important role in the biological and olfactory properties of this class of compounds, only a few crystal structures of brominated and/or chlorinated methoxy benzenes have been published. Here we report the crystal structure of the title compound, a halogenated dimethoxy benzene, to aid in quantitative structure activity relationship studies.

The asymmetric unit of the title compound contains four independent molecules (A, B, C and D). All methoxy groups are approximately co-planar with the attached benzene ring, with dihedral angles between benzene ring (C1-C6) and methoxy plane (C4/O1/C7 or C5/O2/C8) ranging from 0.9 (3)° to 5.0 (3)°. One exception is the dihedral angle between C1C–C6C and C5C/O2C/C8C planes of 12.3 (3)°. This comparatively large dihedral angle is most likely a result of crystal packing effects. Analogously, the methoxy groups of structurally related compounds with no or one substituent ortho to the methoxy group typically lie within the plane of the benzene ring (Rissanen et al., 1988a; Song et al., 2010a). In contrast, much larger dihedral angles are observed for halogenated methoxy benzenes with two (chlorine) substituents ortho to the methoxy group (Rissanen et al., 1987, 1988b; Song et al. 2010b; Telu et al., 2008; Weller & Gerstner, 1995; Wieczorek, 1980). For example, in 1-bromo-2,3,6-trichloro-4,5-dimethoxybenzene, a structurally related dimethoxy benzene, the dihedral angles involving the two methoxy groups are much larger [68.5 (3)° and 84.7 (3)°; Song et al., 2010b].

Experimental

The title compound was synthesized by chlorination of 1-bromo-3,4-dimethoxy-benzene with HCl/H2O2 as chlorination reagent as described previously (Song et al., 2008). Crystals suitable for X-ray diffraction were grown by slow evaporation of a saturated solution of the title compound in CHCl3.

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C–H distances of 0.98 Å (RCH3), 0.95 Å (CArH), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached C atom. Each of the four independent molecules was found to be disordered by a non-crystallographic twofold rotation about an axis running approximately through the bisectors of bonds C1—C2 and C4—C5. This disorder nearly superimposes Cl and Br at the halogen sites. The occupancy ratios for the major and minor components of molecules A, B, C and D are 0.7451 (15):0.2549 (15), 0.5438 (15):0.4562 (15), 0.5027 (15):0.4973 (15) and 0.6246 (15):0.3754 (15), respectively. As a result of the disorder, a number of constraints and restraints were required to ensure that the refinement was stable. The displacement parameters of Cl and Br atoms that are roughly superimposed by the disorder were constrained to be the same. The C—Cl and C—Br distances were restrained using a free variable.

Figures

Fig. 1.

Fig. 1.

One of the four independent molecules of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Only the major disorder component is shown.

Crystal data

C8H8BrClO2 Z = 8
Mr = 251.50 F(000) = 992
Triclinic, P1 Dx = 1.839 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.9264 (2) Å Cell parameters from 7193 reflections
b = 9.9410 (2) Å θ = 1.0–27.5°
c = 19.7219 (5) Å µ = 4.77 mm1
α = 75.9259 (8)° T = 90 K
β = 75.9323 (8)° Block, colourless
γ = 79.9479 (10)° 0.22 × 0.22 × 0.20 mm
V = 1817.26 (7) Å3

Data collection

Nonius KappaCCD diffractometer 8202 independent reflections
Radiation source: fine-focus sealed tube 6065 reflections with I > 2σ(I)
graphite Rint = 0.035
Detector resolution: 18 pixels mm-1 θmax = 27.5°, θmin = 2.1°
ω scans at fixed χ = 55° h = −12→12
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) k = −12→12
Tmin = 0.360, Tmax = 0.385 l = −25→25
14754 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0154P)2 + 1.1857P] where P = (Fo2 + 2Fc2)/3
8202 reflections (Δ/σ)max = 0.004
471 parameters Δρmax = 0.43 e Å3
16 restraints Δρmin = −0.41 e Å3

Special details

Experimental. The triclinic cell appears to transform to a C-centered monoclinic cell but the data fail to merge in a satisfactory way in that setting. The structure solved and refined well with the triclinic setting in spite of the extensive disorder. The refined model does not transform to any monoclinic C model either manually or by use of missed symmetry algorithms such as ADDSYM as implemented in Platon (Spek).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1A −0.0045 (2) 0.9524 (3) 0.89744 (16) 0.0246 (2) 0.7451 (15)
Cl1A 0.0944 (17) 0.6347 (17) 0.9666 (8) 0.0225 (9) 0.7451 (15)
Br1E 0.096 (2) 0.618 (2) 0.9722 (9) 0.0225 (9) 0.2549 (15)
Cl1E 0.0103 (17) 0.954 (2) 0.8902 (13) 0.0246 (2) 0.2549 (15)
O1A 0.54879 (19) 0.65270 (19) 0.77345 (10) 0.0217 (5)
O2A 0.47578 (19) 0.90927 (19) 0.71339 (10) 0.0228 (5)
C1A 0.1671 (3) 0.8534 (3) 0.85998 (15) 0.0192 (6)
C2A 0.2065 (3) 0.7175 (3) 0.89182 (14) 0.0177 (6)
C3A 0.3335 (3) 0.6477 (3) 0.86393 (15) 0.0177 (6)
H3A 0.3599 0.5538 0.8860 0.021*
C4A 0.4218 (3) 0.7129 (3) 0.80463 (15) 0.0177 (6)
C5A 0.3819 (3) 0.8520 (3) 0.77156 (15) 0.0189 (6)
C6A 0.2548 (3) 0.9211 (3) 0.79966 (15) 0.0194 (6)
H6A 0.2273 1.0148 0.7777 0.023*
C7A 0.5938 (3) 0.5126 (3) 0.80712 (16) 0.0214 (7)
H7A1 0.6038 0.5111 0.8555 0.032*
H7A2 0.6841 0.4794 0.7792 0.032*
H7A3 0.5243 0.4517 0.8096 0.032*
C8A 0.4342 (3) 1.0479 (3) 0.67626 (16) 0.0249 (7)
H8A1 0.3468 1.0494 0.6611 0.037*
H8A2 0.5076 1.0756 0.6341 0.037*
H8A3 0.4200 1.1132 0.7081 0.037*
Br1B 0.4007 (8) 0.3438 (5) 1.0251 (4) 0.0247 (4) 0.5438 (15)
Cl1B 0.698 (2) 0.2075 (19) 0.9410 (8) 0.0245 (6) 0.5438 (15)
Br1F 0.7056 (10) 0.2212 (9) 0.9393 (4) 0.0245 (6) 0.4562 (15)
Cl1F 0.400 (2) 0.3317 (15) 1.0310 (12) 0.0247 (4) 0.4562 (15)
O1B 0.41582 (19) −0.1413 (2) 1.20683 (10) 0.0233 (5)
O2B 0.65841 (19) −0.23454 (19) 1.14057 (10) 0.0219 (5)
C1B 0.6106 (3) 0.1110 (3) 1.02176 (14) 0.0182 (6)
C2B 0.4826 (3) 0.1619 (3) 1.05831 (15) 0.0186 (6)
C3B 0.4143 (3) 0.0807 (3) 1.12061 (15) 0.0201 (6)
H3B 0.3263 0.1169 1.1455 0.024*
C4B 0.4733 (3) −0.0519 (3) 1.14657 (15) 0.0168 (6)
C5B 0.6059 (3) −0.1041 (3) 1.10984 (15) 0.0170 (6)
C6B 0.6721 (3) −0.0233 (3) 1.04787 (15) 0.0175 (6)
H6B 0.7602 −0.0588 1.0227 0.021*
C7B 0.2835 (3) −0.0911 (3) 1.24616 (16) 0.0291 (7)
H7B1 0.2936 −0.0102 1.2639 0.044*
H7B2 0.2503 −0.1652 1.2867 0.044*
H7B3 0.2159 −0.0635 1.2149 0.044*
C8B 0.7944 (3) −0.2893 (3) 1.10553 (16) 0.0247 (7)
H8B1 0.7907 −0.2980 1.0576 0.037*
H8B2 0.8227 −0.3815 1.1334 0.037*
H8B3 0.8624 −0.2259 1.1017 0.037*
Br1C 1.2543 (5) 0.6563 (7) 0.4287 (3) 0.0254 (4) 0.5027 (15)
Cl1C 1.3717 (15) 0.357 (2) 0.5194 (12) 0.0222 (4) 0.5027 (15)
Br1G 1.3817 (6) 0.3453 (8) 0.5159 (5) 0.0222 (4) 0.4973 (15)
Cl1G 1.2350 (13) 0.6548 (19) 0.4322 (7) 0.0254 (4) 0.4973 (15)
O1C 0.83249 (19) 0.63322 (19) 0.65073 (10) 0.0217 (5)
O2C 0.9333 (2) 0.3954 (2) 0.71708 (10) 0.0233 (5)
C1C 1.2099 (3) 0.4433 (3) 0.55384 (15) 0.0174 (6)
C2C 1.1566 (3) 0.5695 (3) 0.51819 (14) 0.0186 (6)
C3C 1.0281 (3) 0.6376 (3) 0.54883 (14) 0.0176 (6)
H3C 0.9909 0.7250 0.5238 0.021*
C4C 0.9560 (3) 0.5771 (3) 0.61543 (15) 0.0189 (6)
C5C 1.0120 (3) 0.4465 (3) 0.65207 (15) 0.0176 (6)
C6C 1.1377 (3) 0.3812 (3) 0.62102 (15) 0.0186 (6)
H6C 1.1755 0.2935 0.6454 0.022*
C7C 0.7725 (3) 0.7672 (3) 0.61599 (16) 0.0259 (7)
H7C1 0.8364 0.8367 0.6087 0.039*
H7C2 0.6828 0.7955 0.6460 0.039*
H7C3 0.7576 0.7605 0.5696 0.039*
C8C 0.9994 (3) 0.2797 (3) 0.76102 (16) 0.0252 (7)
H8C1 1.0156 0.1976 0.7396 0.038*
H8C2 0.9389 0.2598 0.8087 0.038*
H8C3 1.0891 0.3023 0.7650 0.038*
Br1D 0.9822 (6) 0.9422 (4) 0.3907 (3) 0.0248 (3) 0.6246 (15)
Cl1D 0.667 (2) 1.065 (2) 0.4698 (8) 0.0265 (8) 0.6246 (15)
Br1H 0.6728 (14) 1.0541 (14) 0.4769 (5) 0.0265 (8) 0.3754 (15)
Cl1H 0.978 (2) 0.9528 (16) 0.3837 (11) 0.0248 (3) 0.3754 (15)
O1D 0.94378 (19) 1.42221 (19) 0.20683 (10) 0.0199 (4)
O2D 0.69740 (19) 1.50728 (19) 0.27335 (10) 0.0196 (4)
C1D 0.7583 (3) 1.1643 (3) 0.39183 (14) 0.0203 (7)
C2D 0.8882 (3) 1.1176 (3) 0.35572 (15) 0.0190 (6)
C3D 0.9541 (3) 1.2016 (3) 0.29312 (15) 0.0179 (6)
H3D 1.0442 1.1693 0.2686 0.022*
C4D 0.8889 (3) 1.3311 (3) 0.26678 (15) 0.0181 (6)
C5D 0.7543 (3) 1.3787 (3) 0.30347 (15) 0.0170 (6)
C6D 0.6913 (3) 1.2950 (3) 0.36545 (15) 0.0198 (6)
H6D 0.6013 1.3266 0.3904 0.024*
C7D 1.0845 (3) 1.3829 (3) 0.17138 (16) 0.0238 (7)
H7D1 1.1459 1.3604 0.2057 0.036*
H7D2 1.1163 1.4606 0.1327 0.036*
H7D3 1.0873 1.3009 0.1515 0.036*
C8D 0.5633 (3) 1.5601 (3) 0.31173 (16) 0.0234 (7)
H8D1 0.4954 1.4951 0.3178 0.035*
H8D2 0.5312 1.6517 0.2847 0.035*
H8D3 0.5721 1.5693 0.3588 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1A 0.0207 (6) 0.0204 (2) 0.0261 (8) 0.0010 (4) 0.0031 (4) −0.0028 (4)
Cl1A 0.0260 (4) 0.016 (3) 0.0187 (17) −0.0060 (16) 0.0003 (11) 0.0057 (14)
Br1E 0.0260 (4) 0.016 (3) 0.0187 (17) −0.0060 (16) 0.0003 (11) 0.0057 (14)
Cl1E 0.0207 (6) 0.0204 (2) 0.0261 (8) 0.0010 (4) 0.0031 (4) −0.0028 (4)
O1A 0.0190 (10) 0.0158 (10) 0.0253 (12) 0.0016 (8) −0.0008 (9) −0.0014 (9)
O2A 0.0220 (11) 0.0167 (11) 0.0232 (12) −0.0037 (9) 0.0010 (9) 0.0032 (9)
C1A 0.0155 (14) 0.0203 (16) 0.0220 (16) −0.0014 (12) −0.0018 (12) −0.0076 (13)
C2A 0.0204 (15) 0.0179 (15) 0.0162 (15) −0.0072 (12) −0.0028 (12) −0.0037 (12)
C3A 0.0194 (15) 0.0141 (14) 0.0191 (16) −0.0012 (12) −0.0043 (12) −0.0027 (12)
C4A 0.0162 (14) 0.0178 (15) 0.0212 (16) −0.0025 (12) −0.0044 (12) −0.0070 (13)
C5A 0.0198 (15) 0.0190 (15) 0.0201 (16) −0.0076 (12) −0.0044 (13) −0.0043 (13)
C6A 0.0217 (15) 0.0144 (15) 0.0222 (17) −0.0029 (12) −0.0048 (13) −0.0036 (13)
C7A 0.0196 (15) 0.0186 (16) 0.0242 (17) 0.0010 (12) −0.0055 (13) −0.0024 (13)
C8A 0.0261 (17) 0.0180 (16) 0.0255 (18) −0.0037 (13) −0.0023 (14) 0.0027 (13)
Br1B 0.0320 (3) 0.0169 (9) 0.0225 (13) 0.0032 (7) −0.0081 (7) −0.0010 (7)
Cl1B 0.0267 (11) 0.0222 (16) 0.0212 (4) −0.0091 (8) −0.0005 (4) 0.0016 (7)
Br1F 0.0267 (11) 0.0222 (16) 0.0212 (4) −0.0091 (8) −0.0005 (4) 0.0016 (7)
Cl1F 0.0320 (3) 0.0169 (9) 0.0225 (13) 0.0032 (7) −0.0081 (7) −0.0010 (7)
O1B 0.0211 (11) 0.0248 (11) 0.0158 (11) −0.0012 (9) 0.0018 (9) 0.0041 (9)
O2B 0.0227 (11) 0.0192 (11) 0.0184 (11) 0.0016 (9) −0.0020 (9) 0.0006 (9)
C1B 0.0216 (15) 0.0193 (15) 0.0156 (15) −0.0079 (12) −0.0036 (12) −0.0037 (12)
C2B 0.0220 (15) 0.0133 (14) 0.0224 (16) −0.0013 (12) −0.0099 (13) −0.0027 (12)
C3B 0.0198 (15) 0.0223 (16) 0.0177 (16) −0.0013 (12) −0.0026 (13) −0.0054 (13)
C4B 0.0186 (15) 0.0164 (15) 0.0150 (15) −0.0044 (12) −0.0026 (12) −0.0018 (12)
C5B 0.0209 (15) 0.0160 (15) 0.0155 (15) −0.0003 (12) −0.0065 (12) −0.0047 (12)
C6B 0.0174 (15) 0.0182 (15) 0.0173 (15) −0.0037 (12) −0.0033 (12) −0.0034 (12)
C7B 0.0204 (16) 0.0349 (19) 0.0221 (18) 0.0021 (14) 0.0027 (13) 0.0019 (15)
C8B 0.0239 (16) 0.0218 (16) 0.0247 (17) 0.0039 (13) −0.0021 (14) −0.0058 (14)
Br1C 0.0183 (14) 0.0303 (3) 0.0202 (6) −0.0011 (10) 0.0021 (7) 0.0009 (4)
Cl1C 0.0207 (9) 0.0226 (13) 0.0212 (9) 0.0018 (6) −0.0004 (7) −0.0075 (7)
Br1G 0.0207 (9) 0.0226 (13) 0.0212 (9) 0.0018 (6) −0.0004 (7) −0.0075 (7)
Cl1G 0.0183 (14) 0.0303 (3) 0.0202 (6) −0.0011 (10) 0.0021 (7) 0.0009 (4)
O1C 0.0188 (10) 0.0202 (11) 0.0204 (11) 0.0029 (8) 0.0000 (9) −0.0018 (9)
O2C 0.0240 (11) 0.0216 (11) 0.0179 (11) −0.0002 (9) 0.0002 (9) 0.0016 (9)
C1C 0.0161 (14) 0.0202 (16) 0.0180 (16) −0.0025 (12) −0.0034 (12) −0.0082 (13)
C2C 0.0198 (15) 0.0208 (16) 0.0154 (15) −0.0059 (13) −0.0029 (12) −0.0026 (13)
C3C 0.0208 (15) 0.0150 (15) 0.0172 (16) −0.0008 (12) −0.0076 (13) −0.0012 (12)
C4C 0.0171 (15) 0.0187 (15) 0.0212 (16) −0.0035 (12) −0.0021 (13) −0.0056 (13)
C5C 0.0205 (15) 0.0165 (15) 0.0154 (15) −0.0050 (12) −0.0026 (12) −0.0017 (12)
C6C 0.0228 (16) 0.0108 (14) 0.0222 (16) −0.0010 (12) −0.0073 (13) −0.0017 (12)
C7C 0.0216 (16) 0.0233 (17) 0.0285 (18) 0.0037 (13) −0.0049 (14) −0.0025 (14)
C8C 0.0311 (17) 0.0217 (16) 0.0176 (16) −0.0009 (13) −0.0044 (14) 0.0034 (13)
Br1D 0.0298 (4) 0.0143 (6) 0.0241 (11) 0.0025 (5) −0.0030 (6) 0.0014 (6)
Cl1D 0.0316 (9) 0.0224 (18) 0.0174 (17) −0.0032 (11) 0.0017 (12) 0.0045 (10)
Br1H 0.0316 (9) 0.0224 (18) 0.0174 (17) −0.0032 (11) 0.0017 (12) 0.0045 (10)
Cl1H 0.0298 (4) 0.0143 (6) 0.0241 (11) 0.0025 (5) −0.0030 (6) 0.0014 (6)
O1D 0.0181 (10) 0.0182 (10) 0.0186 (11) −0.0002 (8) −0.0009 (9) 0.0012 (9)
O2D 0.0205 (11) 0.0156 (10) 0.0197 (11) 0.0017 (8) −0.0031 (9) −0.0021 (9)
C1D 0.0252 (16) 0.0177 (15) 0.0170 (16) −0.0067 (13) −0.0015 (13) −0.0019 (13)
C2D 0.0231 (16) 0.0103 (14) 0.0249 (17) −0.0015 (12) −0.0085 (13) −0.0032 (12)
C3D 0.0171 (14) 0.0161 (15) 0.0207 (16) −0.0006 (12) −0.0040 (12) −0.0050 (12)
C4D 0.0215 (15) 0.0198 (16) 0.0137 (15) −0.0072 (12) −0.0033 (12) −0.0018 (12)
C5D 0.0190 (15) 0.0140 (14) 0.0192 (16) −0.0007 (11) −0.0072 (12) −0.0034 (12)
C6D 0.0204 (15) 0.0213 (16) 0.0177 (16) −0.0030 (12) −0.0021 (13) −0.0059 (13)
C7D 0.0197 (16) 0.0231 (16) 0.0234 (17) −0.0024 (13) 0.0028 (13) −0.0029 (13)
C8D 0.0207 (16) 0.0224 (16) 0.0268 (18) 0.0050 (13) −0.0066 (14) −0.0085 (14)

Geometric parameters (Å, °)

Br1A—C1A 1.890 (3) Br1C—C2C 1.877 (5)
Cl1A—C2A 1.739 (8) Cl1C—C1C 1.746 (10)
Br1E—C2A 1.862 (9) Br1G—C1C 1.890 (5)
Cl1E—C1A 1.753 (11) Cl1G—C2C 1.758 (10)
O1A—C4A 1.365 (3) O1C—C4C 1.354 (3)
O1A—C7A 1.434 (3) O1C—C7C 1.440 (3)
O2A—C5A 1.362 (3) O2C—C5C 1.359 (3)
O2A—C8A 1.436 (3) O2C—C8C 1.425 (3)
C1A—C2A 1.376 (4) C1C—C2C 1.367 (4)
C1A—C6A 1.392 (4) C1C—C6C 1.394 (4)
C2A—C3A 1.385 (4) C2C—C3C 1.405 (4)
C3A—C4A 1.374 (4) C3C—C4C 1.381 (4)
C3A—H3A 0.95 C3C—H3C 0.95
C4A—C5A 1.411 (4) C4C—C5C 1.416 (4)
C5A—C6A 1.383 (4) C5C—C6C 1.375 (4)
C6A—H6A 0.95 C6C—H6C 0.95
C7A—H7A1 0.98 C7C—H7C1 0.98
C7A—H7A2 0.98 C7C—H7C2 0.98
C7A—H7A3 0.98 C7C—H7C3 0.98
C8A—H8A1 0.98 C8C—H8C1 0.98
C8A—H8A2 0.98 C8C—H8C2 0.98
C8A—H8A3 0.98 C8C—H8C3 0.98
Br1B—C2B 1.879 (5) Br1D—C2D 1.883 (4)
Cl1B—C1B 1.755 (10) Cl1D—C1D 1.747 (10)
Br1F—C1B 1.867 (6) Br1H—C1D 1.864 (7)
Cl1F—C2B 1.760 (11) Cl1H—C2D 1.753 (11)
O1B—C4B 1.364 (3) O1D—C4D 1.361 (3)
O1B—C7B 1.428 (3) O1D—C7D 1.435 (3)
O2B—C5B 1.363 (3) O2D—C5D 1.359 (3)
O2B—C8B 1.439 (3) O2D—C8D 1.442 (3)
C1B—C2B 1.377 (4) C1D—C2D 1.375 (4)
C1B—C6B 1.398 (4) C1D—C6D 1.393 (4)
C2B—C3B 1.387 (4) C2D—C3D 1.395 (4)
C3B—C4B 1.375 (4) C3D—C4D 1.375 (4)
C3B—H3B 0.95 C3D—H3D 0.95
C4B—C5B 1.416 (4) C4D—C5D 1.417 (4)
C5B—C6B 1.374 (4) C5D—C6D 1.376 (4)
C6B—H6B 0.95 C6D—H6D 0.95
C7B—H7B1 0.98 C7D—H7D1 0.98
C7B—H7B2 0.98 C7D—H7D2 0.98
C7B—H7B3 0.98 C7D—H7D3 0.98
C8B—H8B1 0.98 C8D—H8D1 0.98
C8B—H8B2 0.98 C8D—H8D2 0.98
C8B—H8B3 0.98 C8D—H8D3 0.98
C4A—O1A—C7A 116.8 (2) C4C—O1C—C7C 117.1 (2)
C5A—O2A—C8A 117.0 (2) C5C—O2C—C8C 116.2 (2)
C2A—C1A—C6A 120.1 (2) C2C—C1C—C6C 120.4 (2)
C2A—C1A—Cl1E 124.7 (8) C2C—C1C—Cl1C 122.0 (8)
C6A—C1A—Cl1E 115.2 (8) C6C—C1C—Cl1C 117.6 (8)
C2A—C1A—Br1A 121.1 (2) C2C—C1C—Br1G 122.6 (4)
C6A—C1A—Br1A 118.8 (2) C6C—C1C—Br1G 117.0 (3)
C1A—C2A—C3A 120.1 (2) C1C—C2C—C3C 120.2 (2)
C1A—C2A—Cl1A 119.3 (6) C1C—C2C—Cl1G 124.5 (6)
C3A—C2A—Cl1A 120.7 (6) C3C—C2C—Cl1G 115.3 (6)
C1A—C2A—Br1E 123.3 (7) C1C—C2C—Br1C 121.0 (3)
C3A—C2A—Br1E 116.6 (7) C3C—C2C—Br1C 118.8 (3)
C4A—C3A—C2A 120.7 (3) C4C—C3C—C2C 119.8 (3)
C4A—C3A—H3A 119.7 C4C—C3C—H3C 120.1
C2A—C3A—H3A 119.7 C2C—C3C—H3C 120.1
O1A—C4A—C3A 124.8 (3) O1C—C4C—C3C 125.2 (3)
O1A—C4A—C5A 115.6 (2) O1C—C4C—C5C 115.1 (2)
C3A—C4A—C5A 119.6 (3) C3C—C4C—C5C 119.6 (3)
O2A—C5A—C6A 124.7 (3) O2C—C5C—C6C 125.1 (3)
O2A—C5A—C4A 115.9 (2) O2C—C5C—C4C 115.3 (2)
C6A—C5A—C4A 119.4 (3) C6C—C5C—C4C 119.7 (3)
C5A—C6A—C1A 120.1 (3) C5C—C6C—C1C 120.3 (3)
C5A—C6A—H6A 119.9 C5C—C6C—H6C 119.9
C1A—C6A—H6A 119.9 C1C—C6C—H6C 119.9
O1A—C7A—H7A1 109.5 O1C—C7C—H7C1 109.5
O1A—C7A—H7A2 109.5 O1C—C7C—H7C2 109.5
H7A1—C7A—H7A2 109.5 H7C1—C7C—H7C2 109.5
O1A—C7A—H7A3 109.5 O1C—C7C—H7C3 109.5
H7A1—C7A—H7A3 109.5 H7C1—C7C—H7C3 109.5
H7A2—C7A—H7A3 109.5 H7C2—C7C—H7C3 109.5
O2A—C8A—H8A1 109.5 O2C—C8C—H8C1 109.5
O2A—C8A—H8A2 109.5 O2C—C8C—H8C2 109.5
H8A1—C8A—H8A2 109.5 H8C1—C8C—H8C2 109.5
O2A—C8A—H8A3 109.5 O2C—C8C—H8C3 109.5
H8A1—C8A—H8A3 109.5 H8C1—C8C—H8C3 109.5
H8A2—C8A—H8A3 109.5 H8C2—C8C—H8C3 109.5
C4B—O1B—C7B 116.6 (2) C4D—O1D—C7D 116.8 (2)
C5B—O2B—C8B 116.9 (2) C5D—O2D—C8D 116.4 (2)
C2B—C1B—C6B 119.7 (2) C2D—C1D—C6D 120.1 (2)
C2B—C1B—Cl1B 122.0 (8) C2D—C1D—Cl1D 123.2 (7)
C6B—C1B—Cl1B 118.3 (8) C6D—C1D—Cl1D 116.7 (7)
C2B—C1B—Br1F 120.8 (4) C2D—C1D—Br1H 120.1 (5)
C6B—C1B—Br1F 119.5 (4) C6D—C1D—Br1H 119.8 (5)
C1B—C2B—C3B 120.5 (3) C1D—C2D—C3D 120.1 (3)
C1B—C2B—Cl1F 122.8 (8) C1D—C2D—Cl1H 123.1 (8)
C3B—C2B—Cl1F 116.7 (8) C3D—C2D—Cl1H 116.7 (8)
C1B—C2B—Br1B 120.2 (3) C1D—C2D—Br1D 121.0 (3)
C3B—C2B—Br1B 119.4 (3) C3D—C2D—Br1D 118.9 (3)
C4B—C3B—C2B 120.4 (3) C4D—C3D—C2D 120.2 (3)
C4B—C3B—H3B 119.8 C4D—C3D—H3D 119.9
C2B—C3B—H3B 119.8 C2D—C3D—H3D 119.9
O1B—C4B—C3B 125.6 (3) O1D—C4D—C3D 125.2 (3)
O1B—C4B—C5B 115.0 (2) O1D—C4D—C5D 115.1 (2)
C3B—C4B—C5B 119.4 (3) C3D—C4D—C5D 119.7 (3)
O2B—C5B—C6B 124.8 (3) O2D—C5D—C6D 124.9 (3)
O2B—C5B—C4B 115.4 (2) O2D—C5D—C4D 115.7 (2)
C6B—C5B—C4B 119.7 (3) C6D—C5D—C4D 119.4 (3)
C5B—C6B—C1B 120.3 (3) C5D—C6D—C1D 120.5 (3)
C5B—C6B—H6B 119.8 C5D—C6D—H6D 119.8
C1B—C6B—H6B 119.8 C1D—C6D—H6D 119.8
O1B—C7B—H7B1 109.5 O1D—C7D—H7D1 109.5
O1B—C7B—H7B2 109.5 O1D—C7D—H7D2 109.5
H7B1—C7B—H7B2 109.5 H7D1—C7D—H7D2 109.5
O1B—C7B—H7B3 109.5 O1D—C7D—H7D3 109.5
H7B1—C7B—H7B3 109.5 H7D1—C7D—H7D3 109.5
H7B2—C7B—H7B3 109.5 H7D2—C7D—H7D3 109.5
O2B—C8B—H8B1 109.5 O2D—C8D—H8D1 109.5
O2B—C8B—H8B2 109.5 O2D—C8D—H8D2 109.5
H8B1—C8B—H8B2 109.5 H8D1—C8D—H8D2 109.5
O2B—C8B—H8B3 109.5 O2D—C8D—H8D3 109.5
H8B1—C8B—H8B3 109.5 H8D1—C8D—H8D3 109.5
H8B2—C8B—H8B3 109.5 H8D2—C8D—H8D3 109.5
C6A—C1A—C2A—C3A 0.0 (4) C6C—C1C—C2C—C3C −0.3 (4)
Cl1E—C1A—C2A—C3A −179.5 (12) Cl1C—C1C—C2C—C3C −177.9 (9)
Br1A—C1A—C2A—C3A −179.2 (2) Br1G—C1C—C2C—C3C 179.8 (4)
C6A—C1A—C2A—Cl1A −179.4 (9) C6C—C1C—C2C—Cl1G −177.8 (8)
Cl1E—C1A—C2A—Cl1A 1.1 (15) Cl1C—C1C—C2C—Cl1G 4.6 (12)
Br1A—C1A—C2A—Cl1A 1.4 (9) Br1G—C1C—C2C—Cl1G 2.4 (9)
C6A—C1A—C2A—Br1E −179.6 (10) C6C—C1C—C2C—Br1C 178.6 (3)
Cl1E—C1A—C2A—Br1E 0.9 (16) Cl1C—C1C—C2C—Br1C 1.0 (10)
Br1A—C1A—C2A—Br1E 1.2 (10) Br1G—C1C—C2C—Br1C −1.2 (5)
C1A—C2A—C3A—C4A 0.3 (4) C1C—C2C—C3C—C4C 0.5 (4)
Cl1A—C2A—C3A—C4A 179.7 (9) Cl1G—C2C—C3C—C4C 178.2 (7)
Br1E—C2A—C3A—C4A 180.0 (9) Br1C—C2C—C3C—C4C −178.5 (3)
C7A—O1A—C4A—C3A −2.1 (4) C7C—O1C—C4C—C3C −0.5 (4)
C7A—O1A—C4A—C5A 178.3 (2) C7C—O1C—C4C—C5C 179.0 (2)
C2A—C3A—C4A—O1A 179.9 (2) C2C—C3C—C4C—O1C 179.2 (2)
C2A—C3A—C4A—C5A −0.5 (4) C2C—C3C—C4C—C5C −0.3 (4)
C8A—O2A—C5A—C6A −4.5 (4) C8C—O2C—C5C—C6C 12.4 (4)
C8A—O2A—C5A—C4A 176.4 (2) C8C—O2C—C5C—C4C −167.7 (2)
O1A—C4A—C5A—O2A −0.8 (4) O1C—C4C—C5C—O2C 0.6 (4)
C3A—C4A—C5A—O2A 179.6 (2) C3C—C4C—C5C—O2C −179.8 (2)
O1A—C4A—C5A—C6A −180.0 (2) O1C—C4C—C5C—C6C −179.5 (2)
C3A—C4A—C5A—C6A 0.4 (4) C3C—C4C—C5C—C6C 0.1 (4)
O2A—C5A—C6A—C1A −179.2 (2) O2C—C5C—C6C—C1C 180.0 (2)
C4A—C5A—C6A—C1A −0.1 (4) C4C—C5C—C6C—C1C 0.1 (4)
C2A—C1A—C6A—C5A −0.1 (4) C2C—C1C—C6C—C5C 0.1 (4)
Cl1E—C1A—C6A—C5A 179.4 (11) Cl1C—C1C—C6C—C5C 177.7 (9)
Br1A—C1A—C6A—C5A 179.1 (2) Br1G—C1C—C6C—C5C 179.9 (4)
C6B—C1B—C2B—C3B −0.2 (4) C6D—C1D—C2D—C3D 0.9 (4)
Cl1B—C1B—C2B—C3B 177.6 (8) Cl1D—C1D—C2D—C3D 179.0 (10)
Br1F—C1B—C2B—C3B −178.3 (4) Br1H—C1D—C2D—C3D −178.2 (6)
C6B—C1B—C2B—Cl1F 177.8 (11) C6D—C1D—C2D—Cl1H −178.2 (10)
Cl1B—C1B—C2B—Cl1F −4.4 (14) Cl1D—C1D—C2D—Cl1H −0.1 (14)
Br1F—C1B—C2B—Cl1F −0.2 (12) Br1H—C1D—C2D—Cl1H 2.7 (12)
C6B—C1B—C2B—Br1B 178.5 (4) C6D—C1D—C2D—Br1D 179.3 (3)
Cl1B—C1B—C2B—Br1B −3.7 (9) Cl1D—C1D—C2D—Br1D −2.6 (10)
Br1F—C1B—C2B—Br1B 0.4 (6) Br1H—C1D—C2D—Br1D 0.2 (7)
C1B—C2B—C3B—C4B −0.2 (4) C1D—C2D—C3D—C4D −0.6 (4)
Cl1F—C2B—C3B—C4B −178.4 (10) Cl1H—C2D—C3D—C4D 178.5 (10)
Br1B—C2B—C3B—C4B −178.9 (4) Br1D—C2D—C3D—C4D −179.1 (3)
C7B—O1B—C4B—C3B −0.6 (4) C7D—O1D—C4D—C3D −4.3 (4)
C7B—O1B—C4B—C5B 178.7 (2) C7D—O1D—C4D—C5D 175.0 (2)
C2B—C3B—C4B—O1B −179.6 (2) C2D—C3D—C4D—O1D 179.2 (2)
C2B—C3B—C4B—C5B 1.2 (4) C2D—C3D—C4D—C5D −0.1 (4)
C8B—O2B—C5B—C6B 1.1 (4) C8D—O2D—C5D—C6D 2.6 (4)
C8B—O2B—C5B—C4B −178.6 (2) C8D—O2D—C5D—C4D −177.3 (2)
O1B—C4B—C5B—O2B −1.3 (3) O1D—C4D—C5D—O2D 1.1 (3)
C3B—C4B—C5B—O2B 178.0 (2) C3D—C4D—C5D—O2D −179.5 (2)
O1B—C4B—C5B—C6B 179.0 (2) O1D—C4D—C5D—C6D −178.8 (2)
C3B—C4B—C5B—C6B −1.7 (4) C3D—C4D—C5D—C6D 0.6 (4)
O2B—C5B—C6B—C1B −178.4 (2) O2D—C5D—C6D—C1D 179.7 (2)
C4B—C5B—C6B—C1B 1.2 (4) C4D—C5D—C6D—C1D −0.4 (4)
C2B—C1B—C6B—C5B −0.3 (4) C2D—C1D—C6D—C5D −0.4 (4)
Cl1B—C1B—C6B—C5B −178.2 (8) Cl1D—C1D—C6D—C5D −178.6 (9)
Br1F—C1B—C6B—C5B 177.8 (4) Br1H—C1D—C6D—C5D 178.7 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5050).

References

  1. Ballschmiter, K. (2003). Chemosphere, 52, 313–324. [DOI] [PubMed]
  2. Brownlee, B. G., MacInnis, G. A. & Noton, L. R. (1993). Environ. Sci. Technol.27, 2450–2455.
  3. Curtis, R. F., Land, D. G., Griffiths, N. M., Gee, M., Robinson, D., Peel, J. L., Dennis, C. & Gee, J. M. (1972). Nature (London), 235, 223–224.
  4. Iimura, Y., Sakurai, T., Asahi, K.-i., Takahashi, N. & Oka, H. (1984). Acta Cryst. C40, 2058–2061.
  5. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  6. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  7. Pereira, C. S., Marques, J. J. F. & San Romao, M. V. (2000). Crit. Rev. Microbiol.26, 147-162. [DOI] [PubMed]
  8. Rissanen, K., Valkonen, J. & Knuutinen, J. (1987). Acta Cryst. C43, 1966–1968.
  9. Rissanen, K., Valkonen, J. & Mannila, B. (1988a). Acta Cryst. C44, 682–684.
  10. Rissanen, K., Valkonen, J. & Mannila, B. (1988b). Acta Cryst. C44, 684–686.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Song, Y., Buettner, G. R., Parkin, S., Wagner, B. A., Robertson, L. W. & Lehmler, H.-J. (2008). J. Org. Chem.73, 8296–8304. [DOI] [PMC free article] [PubMed]
  13. Song, Y., Parkin, S. & Lehmler, H.-J. (2010a). Acta Cryst. E66, o339. [DOI] [PMC free article] [PubMed]
  14. Song, Y., Parkin, S. & Lehmler, H.-J. (2010b). Acta Cryst. E66, o487. [DOI] [PMC free article] [PubMed]
  15. Telu, S., Parkin, S., Robertson, L. W. & Lehmler, H.-J. (2008). Acta Cryst. E64, o424. [DOI] [PMC free article] [PubMed]
  16. Vlachos, P., Kampioti, A., Kornaros, M. & Lyberatos, G. (2007). Eur. Food Res. Technol.225, 653-663.
  17. Weller, F. & Gerstner, E. (1995). Z. Kristallogr.210, 629–629.
  18. Wieczorek, M. W. (1980). Acta Cryst. B36, 1515–1517.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810008445/ci5050sup1.cif

e-66-0o813-sup1.cif (30.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008445/ci5050Isup2.hkl

e-66-0o813-Isup2.hkl (401.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES