Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 13;66(Pt 4):o826–o827. doi: 10.1107/S1600536810008950

9-(2-Ethyl­phenoxy­carbon­yl)-10-methyl­acridinium trifluoro­methane­sulfonate

Damian Trzybiński a, Karol Krzymiński a, Artur Sikorski a, Piotr Malecha a, Jerzy Błażejowski a,*
PMCID: PMC2984008  PMID: 21580656

Abstract

In the crystal structure of the title compound, C23H20NO2 +·CF3SO3 , the cations form inversion dimers through π–π inter­actions between the acridine ring systems. These dimers are further linked by C—H⋯π inter­actions. The cations and anions are connected by C—H⋯O and C—F⋯π inter­actions. The acridine and benzene ring systems are oriented at a dihedral angle of 20.8 (1)°. The carboxyl group is twisted at an angle of 66.2 (1)° relative to the acridine skeleton. The mean planes of adjacent acridine units are parallel in the lattice.

Related literature

For general background to 9-(phenoxy­carbon­yl)-10-alkyl­acridinium salts, see: Brown et al. (2009); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2005a ,b ). For inter­molecular inter­actions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Steiner (1999); Takahashi et al. (2001). For the synthesis, see: Niziołek et al. (2008); Sato (1996).graphic file with name e-66-0o826-scheme1.jpg

Experimental

Crystal data

  • C23H20NO2 +·CF3O3S

  • M r = 491.47

  • Triclinic, Inline graphic

  • a = 9.8519 (4) Å

  • b = 10.9533 (4) Å

  • c = 11.7805 (4) Å

  • α = 104.379 (3)°

  • β = 101.475 (3)°

  • γ = 109.983 (3)°

  • V = 1099.61 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 K

  • 0.40 × 0.35 × 0.20 mm

Data collection

  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • 21109 measured reflections

  • 3914 independent reflections

  • 2956 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.116

  • S = 1.10

  • 3914 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008950/ng2739sup1.cif

e-66-0o826-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008950/ng2739Isup2.hkl

e-66-0o826-Isup2.hkl (191.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O28i 0.93 2.55 3.221 (2) 130
C5—H5⋯O28ii 0.93 2.56 3.222 (3) 129
C24—H24BCg4iii 0.96 2.92 3.603 (2) 129
C26—H26A⋯O29ii 0.96 2.43 3.280 (3) 148
C26—H26CCg4ii 0.96 2.80 3.741 (2) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. C—F⋯π inter­actions (Å,°).

Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively.

XIJ IJ XJ XIJ
C31—F32⋯Cg3iv 3.474 (2) 4.003 (2) 103.67 (14)
C31—F33⋯Cg1iv 3.241 (2) 4.087 (2) 121.73 (14)
C31—F34⋯Cg3iv 3.762 (2) 4.003 (2) 90.62 (13)

Symmetry code: (iv) −x + 1, −y + 2, −z + 1.

Table 3. π–π inter­actions (Å,°).

Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgICgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.

I J CgICgJ Dihedral angle CgI_Perp CgI_Offset
1 1v 4.022 (2) 0.00 3.571 (2) 1.850 (2)
1 3v 3.702 (2) 1.80 3.532 (2) 1.109 (2)
2 3v 3.965 (2) 4.29 3.451 (2) 1.960 (2)
3 1v 3.702 (2) 1.80 3.544 (2) 1.070 (2)
3 2v 3.965 (2) 4.29 3.566 (2) 1.733 (2)

Symmetry code: (v) −x + 1, −y + 1, −z + 1.

Acknowledgments

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education) for the period 2007–2010.

supplementary crystallographic information

Comment

9-(Phenoxycarbonyl)-10-alkylacridinium salts have long been known as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels (Zomer & Jacquemijns, 2001). These compounds are commonly applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Roda et al., 2003; Brown et al., 2009). The reaction of the cations of these salts with hydrogen peroxide in alkaline media produces light. Our own investigations (Rak et al., 1999) and those of others (Zomer et al., 2001) have revealed that oxidation of acridinium chemiluminogens is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining molecules to electronically excited, light-emitting 10-alkyl-9-acridinones. It has been found that the efficiency of chemiluminescence – crucial for analytical applications – is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). In the search for efficient chemiluminogens we undertook investigations on 9-(phenoxycarbonyl)-10-methylacridinium derivatives substituted in the phenyl fragment. Here we present the structure of one such derivative.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2005a,b). With respective average deviations from planarity of 0.022 (3) Å and 0.002 (3) Å, the acridine and benzene ring systems are oriented at 20.8 (1)°. The carboxyl group is twisted at an angle of 66.2 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle of 0.0 (1)°) in the lattice. The mutual arrangement of the carboxyl group relative to the acridine skeleton is similar in the compound investigated and its precursor – 2-ethylphenyl acridine-9-carboxylate (Sikorski et al., 2005a). On the other hand, the acridine and benzene ring systems are oriented quite differently in the compound investigated and its precursor.

In the crystal structure, the inversely oriented cations form dimers through multidirectional π–π interactions involving acridine moieties (Table 3, Fig. 2). These dimers are linked by C–H···O (Table 1, Fig. 2) and C–F···π (Table 2, Fig. 2) interactions to adjacent anions, and by C–H···π (Table 1, Fig. 2) interactions to neighboring cations. The C–H···O interactions are of the hydrogen bond type (Steiner, 1999; Bianchi et al. 2004). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005) and the π–π (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Experimental

The compound was synthesized in three steps (Niziołek et al., 2008). First, 9-(chlorocarbonyl)-acridine was produced by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride. Then, esterification with 2-ethylphenol was carried out in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996). The crude product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 3/2 v/v). The 2-ethylphenyl acridine-9-carboxylate thus obtained was quaternarized with a five-fold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-(2-ethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 25 v/v excess of diethyl ether. Yellow crystals suitable suitable for X-Ray investigations were grown from absolute ethanol solution (m.p. 470-471 K).

Refinement

H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and alkyl H atoms, respectively, and constrained to ride on their parrent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the alkyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids.

Fig. 2.

Fig. 2.

The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π, C–F···π and π–π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) x + 1, y, z + 1; (ii) x + 1, y, z; (iii) –x + 1, –y + 2, –z + 2; (iv) –x + 1, –y + 2, –z + 1; (v) –x + 1, –y + 1, –z + 1.]

Crystal data

C23H20NO2+·CF3O3S Z = 2
Mr = 491.47 F(000) = 508
Triclinic, P1 Dx = 1.484 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.8519 (4) Å Cell parameters from 10425 reflections
b = 10.9533 (4) Å θ = 3.1–29.2°
c = 11.7805 (4) Å µ = 0.21 mm1
α = 104.379 (3)° T = 295 K
β = 101.475 (3)° Block, yellow
γ = 109.983 (3)° 0.40 × 0.35 × 0.20 mm
V = 1099.61 (7) Å3

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer 2956 reflections with I > 2σ(I)
Radiation source: Enhanced (Mo) X-ray Source Rint = 0.039
graphite θmax = 25.1°, θmin = 3.1°
Detector resolution: 10.4002 pixels mm-1 h = −11→11
ω scans k = −13→13
21109 measured reflections l = −14→14
3914 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0737P)2] where P = (Fo2 + 2Fc2)/3
3914 reflections (Δ/σ)max < 0.001
309 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C8 0.4629 (2) 0.70220 (17) 0.44477 (16) 0.0468 (4)
H8 0.3781 0.7136 0.4600 0.056*
C7 0.4857 (2) 0.69994 (19) 0.33477 (18) 0.0561 (5)
H7 0.4164 0.7087 0.2745 0.067*
C6 0.6146 (3) 0.68432 (19) 0.31214 (18) 0.0573 (5)
H6 0.6298 0.6842 0.2367 0.069*
C5 0.7175 (2) 0.66940 (17) 0.39617 (17) 0.0508 (5)
H5 0.8014 0.6591 0.3780 0.061*
C4 0.8753 (2) 0.62222 (19) 0.79550 (18) 0.0535 (5)
H4 0.9549 0.6038 0.7759 0.064*
C3 0.8550 (2) 0.6234 (2) 0.90569 (19) 0.0583 (5)
H3 0.9214 0.6064 0.9612 0.070*
C2 0.7358 (2) 0.64984 (19) 0.93822 (18) 0.0559 (5)
H2 0.7247 0.6518 1.0151 0.067*
C1 0.6372 (2) 0.67241 (18) 0.85755 (16) 0.0499 (5)
H1 0.5573 0.6881 0.8792 0.060*
C9 0.55076 (18) 0.69321 (15) 0.65368 (15) 0.0374 (4)
N10 0.79811 (15) 0.65304 (13) 0.59893 (13) 0.0419 (3)
C13 0.56732 (19) 0.68738 (15) 0.53759 (15) 0.0381 (4)
C14 0.69716 (19) 0.66950 (15) 0.51165 (15) 0.0403 (4)
C11 0.65277 (19) 0.67276 (16) 0.74035 (15) 0.0394 (4)
C12 0.77656 (19) 0.64875 (15) 0.70957 (15) 0.0404 (4)
C15 0.4184 (2) 0.71774 (16) 0.68401 (15) 0.0389 (4)
O16 0.46656 (13) 0.83893 (11) 0.77566 (10) 0.0435 (3)
O17 0.28868 (14) 0.63985 (12) 0.63199 (12) 0.0554 (4)
C18 0.3528 (2) 0.88341 (16) 0.80457 (16) 0.0439 (4)
C19 0.3118 (2) 0.86926 (16) 0.90748 (17) 0.0478 (4)
C20 0.2093 (2) 0.92574 (19) 0.9350 (2) 0.0615 (6)
H20 0.1775 0.9189 1.0032 0.074*
C21 0.1550 (3) 0.9905 (2) 0.8641 (2) 0.0690 (6)
H21 0.0875 1.0273 0.8851 0.083*
C22 0.1986 (3) 1.0024 (2) 0.7621 (2) 0.0671 (6)
H22 0.1602 1.0460 0.7140 0.080*
C23 0.3001 (2) 0.94881 (18) 0.73174 (19) 0.0552 (5)
H23 0.3321 0.9567 0.6637 0.066*
C24 0.3714 (2) 0.79938 (18) 0.98693 (17) 0.0554 (5)
H24A 0.3664 0.8357 1.0692 0.067*
H24B 0.4774 0.8221 0.9933 0.067*
C25 0.2850 (3) 0.6427 (2) 0.9388 (2) 0.0644 (5)
H25A 0.3346 0.6040 0.9891 0.097*
H25B 0.2832 0.6063 0.8552 0.097*
H25C 0.1828 0.6189 0.9416 0.097*
C26 0.9362 (2) 0.6389 (2) 0.5764 (2) 0.0623 (5)
H26A 0.9481 0.6594 0.5034 0.093*
H26B 0.9257 0.5459 0.5655 0.093*
H26C 1.0239 0.7022 0.6456 0.093*
S27 0.07676 (5) 0.73990 (4) 0.26699 (4) 0.04742 (17)
O28 −0.07260 (15) 0.73377 (15) 0.22221 (13) 0.0649 (4)
O29 0.09669 (19) 0.68219 (15) 0.36225 (14) 0.0740 (4)
O30 0.14440 (18) 0.70502 (16) 0.17469 (13) 0.0743 (4)
C31 0.1906 (3) 0.9229 (2) 0.3455 (2) 0.0740 (6)
F32 0.1421 (2) 0.97409 (17) 0.43606 (15) 0.1282 (7)
F33 0.1861 (2) 0.99425 (14) 0.27126 (17) 0.1192 (6)
F34 0.33510 (19) 0.95023 (16) 0.39672 (18) 0.1263 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C8 0.0487 (11) 0.0493 (10) 0.0471 (10) 0.0242 (9) 0.0164 (9) 0.0174 (8)
C7 0.0650 (14) 0.0608 (11) 0.0476 (11) 0.0298 (10) 0.0164 (10) 0.0226 (9)
C6 0.0724 (14) 0.0590 (11) 0.0465 (11) 0.0259 (10) 0.0281 (10) 0.0219 (9)
C5 0.0521 (12) 0.0501 (10) 0.0548 (11) 0.0202 (9) 0.0292 (10) 0.0168 (8)
C4 0.0414 (11) 0.0578 (11) 0.0627 (12) 0.0277 (9) 0.0110 (9) 0.0169 (9)
C3 0.0565 (13) 0.0641 (12) 0.0565 (12) 0.0317 (10) 0.0074 (10) 0.0226 (9)
C2 0.0645 (13) 0.0650 (12) 0.0485 (11) 0.0358 (11) 0.0167 (10) 0.0240 (9)
C1 0.0541 (12) 0.0592 (11) 0.0501 (10) 0.0328 (9) 0.0219 (9) 0.0233 (9)
C9 0.0346 (9) 0.0342 (8) 0.0447 (9) 0.0151 (7) 0.0147 (7) 0.0123 (7)
N10 0.0325 (8) 0.0425 (7) 0.0491 (8) 0.0162 (6) 0.0158 (7) 0.0096 (6)
C13 0.0388 (9) 0.0344 (8) 0.0409 (9) 0.0157 (7) 0.0134 (7) 0.0109 (7)
C14 0.0402 (10) 0.0351 (8) 0.0429 (9) 0.0134 (7) 0.0168 (8) 0.0090 (7)
C11 0.0379 (10) 0.0372 (8) 0.0438 (9) 0.0171 (7) 0.0133 (8) 0.0125 (7)
C12 0.0354 (9) 0.0366 (8) 0.0447 (10) 0.0145 (7) 0.0107 (8) 0.0086 (7)
C15 0.0401 (11) 0.0419 (9) 0.0410 (9) 0.0212 (8) 0.0151 (8) 0.0166 (7)
O16 0.0375 (7) 0.0442 (6) 0.0504 (7) 0.0205 (5) 0.0174 (6) 0.0106 (5)
O17 0.0375 (8) 0.0531 (7) 0.0640 (8) 0.0168 (6) 0.0143 (6) 0.0053 (6)
C18 0.0367 (10) 0.0373 (8) 0.0559 (11) 0.0181 (7) 0.0156 (8) 0.0079 (8)
C19 0.0435 (10) 0.0404 (9) 0.0545 (11) 0.0151 (8) 0.0194 (9) 0.0082 (8)
C20 0.0549 (13) 0.0570 (11) 0.0730 (13) 0.0250 (10) 0.0312 (11) 0.0116 (10)
C21 0.0579 (14) 0.0588 (12) 0.0956 (17) 0.0356 (11) 0.0316 (13) 0.0131 (12)
C22 0.0613 (14) 0.0552 (11) 0.0932 (16) 0.0354 (11) 0.0211 (12) 0.0257 (11)
C23 0.0530 (12) 0.0502 (10) 0.0668 (12) 0.0251 (9) 0.0205 (10) 0.0203 (9)
C24 0.0553 (12) 0.0599 (11) 0.0536 (11) 0.0243 (10) 0.0252 (10) 0.0163 (9)
C25 0.0621 (14) 0.0642 (12) 0.0767 (14) 0.0260 (10) 0.0307 (11) 0.0335 (11)
C26 0.0382 (11) 0.0780 (13) 0.0666 (13) 0.0265 (10) 0.0203 (10) 0.0117 (11)
S27 0.0507 (3) 0.0533 (3) 0.0460 (3) 0.0255 (2) 0.0210 (2) 0.0191 (2)
O28 0.0476 (9) 0.0797 (9) 0.0687 (9) 0.0282 (7) 0.0186 (7) 0.0245 (7)
O29 0.0943 (12) 0.0861 (10) 0.0733 (10) 0.0504 (9) 0.0386 (9) 0.0506 (8)
O30 0.0806 (11) 0.1006 (11) 0.0617 (9) 0.0510 (9) 0.0407 (8) 0.0266 (8)
C31 0.0712 (17) 0.0610 (13) 0.0783 (15) 0.0277 (12) 0.0042 (13) 0.0196 (12)
F32 0.1628 (18) 0.1019 (12) 0.0962 (11) 0.0735 (12) 0.0201 (12) −0.0158 (9)
F33 0.1130 (13) 0.0720 (9) 0.1535 (15) 0.0184 (9) 0.0082 (11) 0.0619 (10)
F34 0.0701 (11) 0.0882 (10) 0.1607 (16) 0.0141 (9) −0.0251 (11) 0.0193 (10)

Geometric parameters (Å, °)

C8—C7 1.354 (3) O16—C18 1.432 (2)
C8—C13 1.427 (2) C18—C23 1.379 (2)
C8—H8 0.9300 C18—C19 1.380 (3)
C7—C6 1.405 (3) C19—C20 1.401 (3)
C7—H7 0.9300 C19—C24 1.500 (3)
C6—C5 1.352 (3) C20—C21 1.365 (3)
C6—H6 0.9300 C20—H20 0.9300
C5—C14 1.414 (2) C21—C22 1.375 (3)
C5—H5 0.9300 C21—H21 0.9300
C4—C3 1.350 (3) C22—C23 1.382 (3)
C4—C12 1.416 (3) C22—H22 0.9300
C4—H4 0.9300 C23—H23 0.9300
C3—C2 1.402 (3) C24—C25 1.523 (3)
C3—H3 0.9300 C24—H24A 0.9700
C2—C1 1.349 (3) C24—H24B 0.9700
C2—H2 0.9300 C25—H25A 0.9600
C1—C11 1.420 (2) C25—H25B 0.9600
C1—H1 0.9300 C25—H25C 0.9600
C9—C13 1.398 (2) C26—H26A 0.9600
C9—C11 1.401 (2) C26—H26B 0.9600
C9—C15 1.509 (2) C26—H26C 0.9600
N10—C12 1.371 (2) S27—O30 1.4242 (14)
N10—C14 1.374 (2) S27—O29 1.4307 (14)
N10—C26 1.488 (2) S27—O28 1.4331 (15)
C13—C14 1.437 (2) S27—C31 1.806 (2)
C11—C12 1.427 (2) C31—F33 1.314 (3)
C15—O17 1.192 (2) C31—F34 1.326 (3)
C15—O16 1.3442 (19) C31—F32 1.330 (3)
C7—C8—C13 120.82 (17) C23—C18—O16 116.69 (16)
C7—C8—H8 119.6 C19—C18—O16 119.15 (16)
C13—C8—H8 119.6 C18—C19—C20 115.51 (18)
C8—C7—C6 119.67 (19) C18—C19—C24 123.48 (16)
C8—C7—H7 120.2 C20—C19—C24 121.01 (18)
C6—C7—H7 120.2 C21—C20—C19 121.7 (2)
C5—C6—C7 122.33 (18) C21—C20—H20 119.1
C5—C6—H6 118.8 C19—C20—H20 119.1
C7—C6—H6 118.8 C20—C21—C22 120.97 (19)
C6—C5—C14 119.89 (18) C20—C21—H21 119.5
C6—C5—H5 120.1 C22—C21—H21 119.5
C14—C5—H5 120.1 C21—C22—C23 119.4 (2)
C3—C4—C12 120.51 (18) C21—C22—H22 120.3
C3—C4—H4 119.7 C23—C22—H22 120.3
C12—C4—H4 119.7 C18—C23—C22 118.5 (2)
C4—C3—C2 121.39 (18) C18—C23—H23 120.8
C4—C3—H3 119.3 C22—C23—H23 120.8
C2—C3—H3 119.3 C19—C24—C25 113.77 (17)
C1—C2—C3 119.77 (19) C19—C24—H24A 108.8
C1—C2—H2 120.1 C25—C24—H24A 108.8
C3—C2—H2 120.1 C19—C24—H24B 108.8
C2—C1—C11 121.50 (18) C25—C24—H24B 108.8
C2—C1—H1 119.2 H24A—C24—H24B 107.7
C11—C1—H1 119.2 C24—C25—H25A 109.5
C13—C9—C11 120.83 (15) C24—C25—H25B 109.5
C13—C9—C15 119.28 (15) H25A—C25—H25B 109.5
C11—C9—C15 119.87 (15) C24—C25—H25C 109.5
C12—N10—C14 121.94 (14) H25A—C25—H25C 109.5
C12—N10—C26 117.26 (16) H25B—C25—H25C 109.5
C14—N10—C26 120.80 (15) N10—C26—H26A 109.5
C9—C13—C8 122.77 (15) N10—C26—H26B 109.5
C9—C13—C14 118.70 (16) H26A—C26—H26B 109.5
C8—C13—C14 118.51 (15) N10—C26—H26C 109.5
N10—C14—C5 121.66 (16) H26A—C26—H26C 109.5
N10—C14—C13 119.56 (15) H26B—C26—H26C 109.5
C5—C14—C13 118.77 (17) O30—S27—O29 114.62 (9)
C9—C11—C1 122.87 (16) O30—S27—O28 115.38 (9)
C9—C11—C12 119.01 (15) O29—S27—O28 115.01 (9)
C1—C11—C12 118.12 (16) O30—S27—C31 103.15 (11)
N10—C12—C4 121.62 (16) O29—S27—C31 103.45 (10)
N10—C12—C11 119.71 (15) O28—S27—C31 102.78 (10)
C4—C12—C11 118.67 (16) F33—C31—F34 107.8 (2)
O17—C15—O16 125.00 (15) F33—C31—F32 106.5 (2)
O17—C15—C9 123.94 (15) F34—C31—F32 106.5 (2)
O16—C15—C9 111.05 (14) F33—C31—S27 112.23 (16)
C15—O16—C18 117.14 (13) F34—C31—S27 112.05 (16)
C23—C18—C19 123.94 (16) F32—C31—S27 111.42 (18)
C13—C8—C7—C6 −0.7 (3) C9—C11—C12—N10 3.3 (2)
C8—C7—C6—C5 0.9 (3) C1—C11—C12—N10 −177.78 (14)
C7—C6—C5—C14 −0.1 (3) C9—C11—C12—C4 −177.29 (15)
C12—C4—C3—C2 0.4 (3) C1—C11—C12—C4 1.6 (2)
C4—C3—C2—C1 1.1 (3) C13—C9—C15—O17 63.9 (2)
C3—C2—C1—C11 −1.2 (3) C11—C9—C15—O17 −114.36 (19)
C11—C9—C13—C8 177.50 (15) C13—C9—C15—O16 −115.39 (16)
C15—C9—C13—C8 −0.7 (2) C11—C9—C15—O16 66.40 (18)
C11—C9—C13—C14 −4.3 (2) O17—C15—O16—C18 −6.3 (2)
C15—C9—C13—C14 177.54 (13) C9—C15—O16—C18 172.96 (13)
C7—C8—C13—C9 178.04 (16) C15—O16—C18—C23 −82.25 (18)
C7—C8—C13—C14 −0.2 (2) C15—O16—C18—C19 102.93 (18)
C12—N10—C14—C5 −177.94 (14) C23—C18—C19—C20 0.5 (3)
C26—N10—C14—C5 2.0 (2) O16—C18—C19—C20 174.87 (14)
C12—N10—C14—C13 2.1 (2) C23—C18—C19—C24 −179.24 (17)
C26—N10—C14—C13 −178.01 (14) O16—C18—C19—C24 −4.8 (2)
C6—C5—C14—N10 179.25 (16) C18—C19—C20—C21 −0.2 (3)
C6—C5—C14—C13 −0.8 (2) C24—C19—C20—C21 179.50 (18)
C9—C13—C14—N10 2.6 (2) C19—C20—C21—C22 0.3 (3)
C8—C13—C14—N10 −179.08 (14) C20—C21—C22—C23 −0.6 (3)
C9—C13—C14—C5 −177.38 (14) C19—C18—C23—C22 −0.8 (3)
C8—C13—C14—C5 0.9 (2) O16—C18—C23—C22 −175.31 (16)
C13—C9—C11—C1 −177.50 (15) C21—C22—C23—C18 0.8 (3)
C15—C9—C11—C1 0.7 (2) C18—C19—C24—C25 −83.8 (2)
C13—C9—C11—C12 1.4 (2) C20—C19—C24—C25 96.5 (2)
C15—C9—C11—C12 179.56 (13) O30—S27—C31—F33 60.3 (2)
C2—C1—C11—C9 178.74 (17) O29—S27—C31—F33 −179.97 (18)
C2—C1—C11—C12 −0.1 (3) O28—S27—C31—F33 −60.0 (2)
C14—N10—C12—C4 175.56 (15) O30—S27—C31—F34 −61.1 (2)
C26—N10—C12—C4 −4.4 (2) O29—S27—C31—F34 58.6 (2)
C14—N10—C12—C11 −5.0 (2) O28—S27—C31—F34 178.62 (18)
C26—N10—C12—C11 175.04 (14) O30—S27—C31—F32 179.70 (16)
C3—C4—C12—N10 177.62 (16) O29—S27—C31—F32 −60.58 (18)
C3—C4—C12—C11 −1.8 (3) O28—S27—C31—F32 59.41 (18)

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C18–C23 ring.
D—H···A D—H H···A D···A D—H···A
C2—H2···O28i 0.93 2.55 3.221 (2) 130
C5—H5···O28ii 0.93 2.56 3.222 (3) 129
C24—H24B···Cg4iii 0.96 2.92 3.603 (2) 129
C26—H26A···O29ii 0.96 2.43 3.280 (3) 148
C26—H26C···Cg4ii 0.96 2.80 3.741 (2) 165

Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) −x+1, −y+2, −z+2.

Table 2 C—F···π interactions (Å,°)

Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively.

XI···J I···J X···J XI···J
C31—F32···Cg3iv 3.474 (2) 4.003 (2) 103.67 (14)
C31—F33···Cg1iv 3.241 (2) 4.087 (2) 121.73 (14)
C31—F34···Cg3iv 3.762 (2) 4.003 (2) 90.62 (13)

Symmetry code: (iv) -x + 1, -y+ 2, -z + 1.

Table 3 π–π interactions (Å,°)

Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.

I J CgI···CgJ Dihedral angle CgI_Perp CgI_Offset
1 1v 4.022 (2) 0.00 3.571 (2) 1.850 (2)
1 3v 3.702 (2) 1.80 3.532 (2) 1.109 (2)
2 3v 3.965 (2) 4.29 3.451 (2) 1.960 (2)
3 1v 3.702 (2) 1.80 3.544 (2) 1.070 (2)
3 2v 3.965 (2) 4.29 3.566 (2) 1.733 (2)

Symmetry code: (v) -x + 1, -y + 1, -z + 1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2739).

References

  1. Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. [DOI] [PubMed]
  2. Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem.7, 386–394. [DOI] [PubMed]
  3. Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.
  6. Niziołek, A., Zadykowicz, B., Trzybiński, D., Sikorski, A., Krzymiński, K. & Błażejowski, J. (2008). J. Mol. Struct.920, 231–237.
  7. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  8. Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem.64, 3002–3008. [DOI] [PubMed]
  9. Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem.A75, 462–470.
  10. Sato, N. (1996). Tetrahedron Lett.37, 8519–8522.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005a). Acta Cryst. C61, o50–o52. [DOI] [PubMed]
  13. Sikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005b). Acta Cryst. C61, o690–o694. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Steiner, T. (1999). Chem. Commun. pp. 313–314.
  16. Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.
  17. Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008950/ng2739sup1.cif

e-66-0o826-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008950/ng2739Isup2.hkl

e-66-0o826-Isup2.hkl (191.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES