Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 27;66(Pt 4):o951. doi: 10.1107/S1600536810010846

2-(Morpholinium-4-yl)ethyl­ammonium sulfate methanol monosolvate

Ye Bi a,*
PMCID: PMC2984010  PMID: 21580755

Abstract

In the title compound, C6H16N2O2+·SO4 2−·CH3OH, the morpholinium ring of the dication adopts a chair conformation. The crystal structure is stabilized by an extensive three-dimensional network of inter­molecular O—H⋯O, N—H⋯O, O—H⋯S and N—H⋯S hydrogen bonds.

Related literature

For supra­molecular compounds derived from the self-assembly of inorganic acids with organic amines, see: Xu (2010); Akhtar et al. (2010); Zhang & Liu (2010); Hemamalini & Fun (2010); SiMa (2010).graphic file with name e-66-0o951-scheme1.jpg

Experimental

Crystal data

  • C6H16N2O2+·SO4 2−·CH4O

  • M r = 260.31

  • Monoclinic, Inline graphic

  • a = 15.593 (14) Å

  • b = 8.573 (8) Å

  • c = 9.483 (9) Å

  • β = 106.395 (11)°

  • V = 1216.0 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.20 × 0.18 × 0.18 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.946, T max = 0.951

  • 5674 measured reflections

  • 2462 independent reflections

  • 1726 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.087

  • wR(F 2) = 0.286

  • S = 1.08

  • 2462 reflections

  • 151 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.87 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810010846/sj2757sup1.cif

e-66-0o951-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010846/sj2757Isup2.hkl

e-66-0o951-Isup2.hkl (121KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O4i 0.82 1.85 2.659 (6) 172
O5—H5⋯S1i 0.82 2.92 3.636 (6) 147
N2—H2A⋯O1ii 0.89 2.07 2.914 (5) 158
N2—H2A⋯O3ii 0.89 2.30 3.001 (5) 135
N2—H2A⋯S1ii 0.89 2.68 3.553 (4) 167
N2—H2B⋯O2iii 0.89 2.02 2.898 (5) 168
N2—H2B⋯O3iii 0.89 2.45 3.081 (5) 128
N2—H2B⋯S1iii 0.89 2.72 3.567 (4) 160
N2—H2C⋯O2 0.89 2.18 2.997 (5) 153
N2—H2C⋯O1 0.89 2.23 2.930 (4) 135
N2—H2C⋯S1 0.89 2.71 3.565 (4) 162
N1—H1⋯O2iv 0.90 (1) 2.01 (3) 2.837 (5) 152 (5)
N1—H1⋯O4iv 0.90 (1) 2.60 (3) 3.382 (6) 146 (5)
N1—H1⋯S1iv 0.90 (1) 2.85 (1) 3.738 (4) 172 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

Self-assembly of inorganic acids with organic amines readily gives rise to hydrogen-bonded supramolecular compounds (Xu, 2010; Akhtar et al., 2010; Zhang & Liu, 2010; Hemamalini & Fun, 2010; SiMa, 2010). In order to construct a similar supramolecular compound, the title compound was prepared from the reaction of 2-morpholin-4-ylethylamine with sulfuric acid in a methanol solution and its structure is reported here.

The title compound consists of a 2-morpholin-4-ylethylammonium dication, a sulfate dianion, and a methanol molecule (Fig. 1). The crystal structure is stabilized by intermolecular O–H···O, N–H···O, O–H···S, and N–H···S hydrogen bonds (Table 1, Fig. 2).

Experimental

Equimolar quantities (1.0 mmol each) of 2-morpholin-4-ylethylamine and sulfuric acid were mixed in a methanol solution. The mixture was stirred at room temperature for half an hour to give a colorless solution. After keeping the solution in air for a few days, colorless block-shaped crystals were formed.

Refinement

H1 attached to N1 was located from a difference map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. Other H atoms were placed in calculated positions and constrained to ride on their parent atoms with C–H distances of 0.96-0.97 Å, N–H distances of 0.89 Å, O–H distance of 0.82 Å, and with Uiso(H) set to 1.2Ueq(C,N) and 1.5Ueq(O5 and C7). Crystals were small and very weakly diffracting and this is reflected in the low fraction of measured reflections and the relatively poor residuals.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

Molecular packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C6H16N2O2+·SO42·CH4O F(000) = 560
Mr = 260.31 Dx = 1.422 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2104 reflections
a = 15.593 (14) Å θ = 2.2–27.7°
b = 8.573 (8) Å µ = 0.28 mm1
c = 9.483 (9) Å T = 298 K
β = 106.395 (11)° Block, colorless
V = 1216.0 (19) Å3 0.20 × 0.18 × 0.18 mm
Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 2462 independent reflections
Radiation source: fine-focus sealed tube 1726 reflections with I > 2σ(I)
graphite Rint = 0.049
ω scans θmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −19→14
Tmin = 0.946, Tmax = 0.951 k = −10→10
5674 measured reflections l = −10→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.286 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.1965P)2] where P = (Fo2 + 2Fc2)/3
2462 reflections (Δ/σ)max < 0.001
151 parameters Δρmax = 0.62 e Å3
1 restraint Δρmin = −0.87 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.35803 (6) 0.59946 (11) 0.06772 (9) 0.0369 (4)
O1 0.3987 (2) 0.5157 (3) 0.2047 (3) 0.0523 (8)
O2 0.3969 (2) 0.7579 (3) 0.0786 (3) 0.0557 (8)
O3 0.3768 (2) 0.5166 (4) −0.0531 (3) 0.0574 (9)
O4 0.2617 (2) 0.6167 (5) 0.0429 (5) 0.0772 (11)
O5 0.1552 (3) 0.3688 (5) 1.0088 (7) 0.1071 (18)
H5 0.1834 0.4507 1.0182 0.161*
O6 0.9107 (2) 0.4451 (4) 0.5902 (3) 0.0606 (9)
N1 0.7246 (2) 0.5104 (4) 0.4511 (3) 0.0371 (7)
N2 0.51382 (19) 0.7510 (4) 0.3894 (3) 0.0403 (8)
H2A 0.5402 0.8420 0.3841 0.061*
H2B 0.4754 0.7621 0.4426 0.061*
H2C 0.4846 0.7192 0.2993 0.061*
C1 0.7681 (3) 0.5356 (5) 0.6131 (4) 0.0469 (10)
H1A 0.7247 0.5183 0.6673 0.056*
H1B 0.7893 0.6422 0.6300 0.056*
C2 0.8462 (3) 0.4232 (7) 0.6667 (5) 0.0593 (12)
H2D 0.8736 0.4392 0.7709 0.071*
H2E 0.8242 0.3168 0.6528 0.071*
C3 0.8723 (3) 0.4061 (6) 0.4418 (5) 0.0558 (12)
H3A 0.8513 0.2991 0.4351 0.067*
H3B 0.9174 0.4135 0.3895 0.067*
C4 0.7949 (3) 0.5129 (5) 0.3698 (4) 0.0471 (10)
H4A 0.8168 0.6186 0.3682 0.056*
H4B 0.7684 0.4801 0.2690 0.056*
C5 0.6558 (2) 0.6314 (5) 0.3848 (4) 0.0394 (8)
H5A 0.6304 0.6094 0.2810 0.047*
H5B 0.6841 0.7330 0.3938 0.047*
C6 0.5817 (3) 0.6351 (5) 0.4589 (5) 0.0497 (10)
H6A 0.5542 0.5328 0.4524 0.060*
H6B 0.6065 0.6604 0.5621 0.060*
C7 0.0750 (4) 0.3876 (9) 0.9066 (8) 0.0911 (19)
H7A 0.0295 0.3351 0.9386 0.137*
H7B 0.0778 0.3444 0.8146 0.137*
H7C 0.0611 0.4968 0.8944 0.137*
H1 0.702 (4) 0.413 (3) 0.437 (6) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0318 (6) 0.0445 (6) 0.0335 (6) 0.0004 (3) 0.0079 (4) 0.0002 (3)
O1 0.0618 (19) 0.0560 (18) 0.0355 (14) −0.0019 (14) 0.0078 (13) 0.0054 (11)
O2 0.068 (2) 0.0439 (17) 0.0592 (18) −0.0076 (14) 0.0246 (14) −0.0018 (12)
O3 0.071 (2) 0.065 (2) 0.0364 (14) 0.0049 (15) 0.0159 (13) −0.0076 (12)
O4 0.0357 (18) 0.089 (3) 0.107 (3) 0.0122 (15) 0.0190 (18) 0.005 (2)
O5 0.070 (3) 0.081 (3) 0.143 (4) −0.002 (2) −0.016 (3) 0.016 (3)
O6 0.0330 (15) 0.092 (2) 0.0519 (17) 0.0065 (15) 0.0046 (12) −0.0012 (16)
N1 0.0305 (15) 0.0446 (17) 0.0346 (15) −0.0036 (12) 0.0068 (11) −0.0012 (12)
N2 0.0317 (16) 0.0509 (19) 0.0376 (15) −0.0020 (12) 0.0085 (12) −0.0046 (13)
C1 0.039 (2) 0.067 (3) 0.0326 (18) 0.0013 (18) 0.0064 (14) 0.0002 (16)
C2 0.043 (2) 0.089 (3) 0.039 (2) 0.009 (2) 0.0008 (17) 0.011 (2)
C3 0.036 (2) 0.081 (3) 0.050 (2) 0.0041 (19) 0.0122 (17) −0.0046 (19)
C4 0.036 (2) 0.068 (3) 0.0380 (18) −0.0050 (18) 0.0119 (15) −0.0039 (16)
C5 0.0333 (18) 0.055 (2) 0.0287 (16) 0.0000 (15) 0.0072 (13) −0.0001 (14)
C6 0.050 (2) 0.059 (2) 0.047 (2) 0.0108 (19) 0.0257 (17) 0.0136 (18)
C7 0.049 (3) 0.108 (5) 0.109 (5) 0.005 (3) 0.011 (3) 0.000 (4)

Geometric parameters (Å, °)

S1—O3 1.446 (3) C1—H1A 0.9700
S1—O4 1.461 (4) C1—H1B 0.9700
S1—O1 1.463 (3) C2—H2D 0.9700
S1—O2 1.479 (3) C2—H2E 0.9700
O5—C7 1.358 (7) C3—C4 1.516 (6)
O5—H5 0.8200 C3—H3A 0.9700
O6—C3 1.405 (5) C3—H3B 0.9700
O6—C2 1.409 (6) C4—H4A 0.9700
N1—C5 1.497 (5) C4—H4B 0.9700
N1—C4 1.508 (5) C5—C6 1.512 (5)
N1—C1 1.509 (5) C5—H5A 0.9700
N1—H1 0.899 (10) C5—H5B 0.9700
N2—C6 1.466 (5) C6—H6A 0.9700
N2—H2A 0.8900 C6—H6B 0.9700
N2—H2B 0.8900 C7—H7A 0.9600
N2—H2C 0.8900 C7—H7B 0.9600
C1—C2 1.524 (6) C7—H7C 0.9600
O3—S1—O4 110.5 (2) H2D—C2—H2E 108.0
O3—S1—O1 109.1 (2) O6—C3—C4 111.5 (4)
O4—S1—O1 111.2 (2) O6—C3—H3A 109.3
O3—S1—O2 109.6 (2) C4—C3—H3A 109.3
O4—S1—O2 107.5 (2) O6—C3—H3B 109.3
O1—S1—O2 108.85 (17) C4—C3—H3B 109.3
C7—O5—H5 109.5 H3A—C3—H3B 108.0
C3—O6—C2 108.6 (3) N1—C4—C3 111.3 (3)
C5—N1—C4 108.3 (3) N1—C4—H4A 109.4
C5—N1—C1 113.0 (3) C3—C4—H4A 109.4
C4—N1—C1 109.6 (3) N1—C4—H4B 109.4
C5—N1—H1 112 (4) C3—C4—H4B 109.4
C4—N1—H1 104 (4) H4A—C4—H4B 108.0
C1—N1—H1 109 (4) N1—C5—C6 111.7 (3)
C6—N2—H2A 109.5 N1—C5—H5A 109.3
C6—N2—H2B 109.5 C6—C5—H5A 109.3
H2A—N2—H2B 109.5 N1—C5—H5B 109.3
C6—N2—H2C 109.5 C6—C5—H5B 109.3
H2A—N2—H2C 109.5 H5A—C5—H5B 107.9
H2B—N2—H2C 109.5 N2—C6—C5 110.8 (3)
N1—C1—C2 109.6 (3) N2—C6—H6A 109.5
N1—C1—H1A 109.7 C5—C6—H6A 109.5
C2—C1—H1A 109.7 N2—C6—H6B 109.5
N1—C1—H1B 109.7 C5—C6—H6B 109.5
C2—C1—H1B 109.7 H6A—C6—H6B 108.1
H1A—C1—H1B 108.2 O5—C7—H7A 109.5
O6—C2—C1 111.3 (4) O5—C7—H7B 109.5
O6—C2—H2D 109.4 H7A—C7—H7B 109.5
C1—C2—H2D 109.4 O5—C7—H7C 109.5
O6—C2—H2E 109.4 H7A—C7—H7C 109.5
C1—C2—H2E 109.4 H7B—C7—H7C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5···O4i 0.82 1.85 2.659 (6) 172
O5—H5···S1i 0.82 2.92 3.636 (6) 147
N2—H2A···O1ii 0.89 2.07 2.914 (5) 158
N2—H2A···O3ii 0.89 2.30 3.001 (5) 135
N2—H2A···S1ii 0.89 2.68 3.553 (4) 167
N2—H2B···O2iii 0.89 2.02 2.898 (5) 168
N2—H2B···O3iii 0.89 2.45 3.081 (5) 128
N2—H2B···S1iii 0.89 2.72 3.567 (4) 160
N2—H2C···O2 0.89 2.18 2.997 (5) 153
N2—H2C···O1 0.89 2.23 2.930 (4) 135
N2—H2C···S1 0.89 2.71 3.565 (4) 162
N1—H1···O2iv 0.90 (1) 2.01 (3) 2.837 (5) 152 (5)
N1—H1···O4iv 0.90 (1) 2.60 (3) 3.382 (6) 146 (5)
N1—H1···S1iv 0.90 (1) 2.85 (1) 3.738 (4) 172 (5)

Symmetry codes: (i) x, y, z+1; (ii) −x+1, y+1/2, −z+1/2; (iii) x, −y+3/2, z+1/2; (iv) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2757).

References

  1. Akhtar, T., Masih, K., Tahir, M. N., Tariq, M. I. & Iqbal, S. (2010). Acta Cryst. E66, o819. [DOI] [PMC free article] [PubMed]
  2. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o783–o784. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. SiMa, W. (2010). Acta Cryst. E66, o895. [DOI] [PMC free article] [PubMed]
  7. Xu, R. (2010). Acta Cryst. E66, o835. [DOI] [PMC free article] [PubMed]
  8. Zhang, Y. & Liu, X. (2010). Acta Cryst. E66, o790. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810010846/sj2757sup1.cif

e-66-0o951-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010846/sj2757Isup2.hkl

e-66-0o951-Isup2.hkl (121KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES