Abstract
In the title compound, C11H15NO2, the pyrrolidine ring adapts a twisted envelope conformation and the two hydroxyl groups are arranged in a trans conformation. The crystal packing is stabilized by intermolecular O—H⋯N and O—H⋯O hydrogen bonds. A weak C—H⋯π interaction also occurs.
Related literature
For the preparation of the title compound, see: Nagel et al. (1984 ▶); Inoguchi et al. (1990 ▶). The title compound is used in the preparation of the chiral phosphine ligand DEGphos, (+)-(3R,4R)-N-benzyl-3,4-bis(diphenylphosphino)pyrrolidine, (Nagel et al., 1984 ▶), an efficient ligand for Rh-catalysed asymmetric hydrogenation (Tang & Zhang, 2003 ▶).
Experimental
Crystal data
C11H15NO2
M r = 193.24
Monoclinic,
a = 6.0244 (10) Å
b = 8.1033 (14) Å
c = 10.3981 (18) Å
β = 96.016 (2)°
V = 504.81 (15) Å3
Z = 2
Mo Kα radiation
μ = 0.09 mm−1
T = 293 K
0.31 × 0.27 × 0.14 mm
Data collection
Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005 ▶) T min = 0.973, T max = 0.987
1440 measured reflections
1440 independent reflections
1348 reflections with I > 2σ(I)
Refinement
R[F 2 > 2σ(F 2)] = 0.032
wR(F 2) = 0.105
S = 1.03
1440 reflections
125 parameters
1 restraint
H-atom parameters constrained
Δρmax = 0.15 e Å−3
Δρmin = −0.11 e Å−3
Data collection: APEX2 (Bruker, 2008 ▶); cell refinement: SAINT (Bruker); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: Mercury (Macrae et al., 2006 ▶) and CAMERON (Watkin et al., 1996 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809055391/jj2016sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055391/jj2016Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
Cg2 is the centroid of the C1–C6 ring.
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
O1—H1⋯N1i | 0.82 | 2.13 | 2.918 (2) | 162 |
O2—H2⋯O1ii | 0.82 | 2.14 | 2.914 (2) | 157 |
C10—H10⋯Cg2iii | 0.98 | 2.86 | 3.771 (2) | 155 |
Symmetry codes: (i) ; (ii)
; (iii)
.
Acknowledgments
We thank the Natural Science Foundation of China (grant No. 20802092) for financial support.
supplementary crystallographic information
Comment
The title compound (+)-(3S,4S)-1-benzylpyrrolidine-3,4-diol was obtained from L-tartaric acid by condensation with benzylamine followed by reduction with NaBH4—BF3.Et2O. This is used for preparation of the chiral phosphine ligand DEGphos ((+)-(3R,4R)-N-benzyl-3,4- bis(diphenylphosphino)pyrrolidine, (Nagel et al., 1984), an efficient ligand for Rh-catalyzed asymmetric hydrogenations (Tang & Zhang, 2003).
In the title compound, C11H15NO2, the pyrrolidine ring adapts a twisted envelope formation. The two hydroxyl groups at C9 and C10 are arranged in a trans- conformation. The dihedral angle between the mean planes of the pyrrolidine phenyl rings is 62.4 (2)°. Crystal packing is stabilized by intermolecular O—H···N and O—H···O hydrogen bonds interactions. A weak C—H···Cg2 π ring intermolecular intereaction is also observed, where Cg2 = C1–C6.
Experimental
The synthesis of the title compound is described by Nagel et al. (1984). Crystals were grown from its solution in acetone; m.p. 371–373 K.
Refinement
The absolute structure could not be established from the dffraction data and was assigned based on L-tartaric acid the starting material.
All the H atoms were located in difference Fourier maps. However, they were constrained by riding model approximation. C—Hmethyl=0.97 Å; C—Haryl=0.93 Å; UisoHmethyl and UisoHaryl are both 1.2 U eq(C). O—H is 0.82Å with Uiso(H)=1.5Ueq(O).
Figures
Fig. 1.
The molecular structure of (I) showing displacement ellipsoids drawn at the 50% probability level. The hydrogen atoms are drawn as spheres of arbitrary radius.
Fig. 2.
The packing of (I) viewed down the b axis. Dashed lines indicate hydrogen bonds.
Crystal data
C11H15NO2 | F(000) = 208 |
Mr = 193.24 | Dx = 1.271 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 1279 reflections |
a = 6.0244 (10) Å | θ = 3.2–25.6° |
b = 8.1033 (14) Å | µ = 0.09 mm−1 |
c = 10.3981 (18) Å | T = 293 K |
β = 96.016 (2)° | Block, colorless |
V = 504.81 (15) Å3 | 0.31 × 0.27 × 0.14 mm |
Z = 2 |
Data collection
Bruker APEXII CCD diffractometer | 1440 independent reflections |
Radiation source: fine-focus sealed tube | 1348 reflections with I > 2σ(I) |
graphite | Rint = 0.0000 |
φ and ω scans | θmax = 25.1°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −7→7 |
Tmin = 0.973, Tmax = 0.987 | k = −8→9 |
1440 measured reflections | l = 0→12 |
Refinement
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.080P)2] where P = (Fo2 + 2Fc2)/3 |
1440 reflections | (Δ/σ)max < 0.001 |
125 parameters | Δρmax = 0.15 e Å−3 |
1 restraint | Δρmin = −0.11 e Å−3 |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
N1 | 0.5935 (2) | −0.00443 (18) | 0.18867 (14) | 0.0358 (4) | |
O1 | 0.3213 (2) | −0.36878 (18) | 0.06145 (13) | 0.0451 (4) | |
H1 | 0.3166 | −0.4139 | −0.0094 | 0.068* | |
O2 | 0.8566 (2) | −0.2626 (2) | 0.03312 (13) | 0.0556 (5) | |
H2 | 0.9802 | −0.2956 | 0.0628 | 0.083* | |
C1 | 0.7231 (4) | 0.3493 (3) | 0.42248 (18) | 0.0511 (6) | |
H1A | 0.6080 | 0.3348 | 0.4744 | 0.061* | |
C2 | 0.8766 (4) | 0.4734 (3) | 0.4518 (2) | 0.0602 (6) | |
H2A | 0.8637 | 0.5423 | 0.5221 | 0.072* | |
C3 | 1.0500 (4) | 0.4951 (3) | 0.3760 (2) | 0.0582 (6) | |
H3 | 1.1551 | 0.5777 | 0.3958 | 0.070* | |
C4 | 1.0660 (4) | 0.3935 (3) | 0.2711 (2) | 0.0485 (5) | |
H4 | 1.1814 | 0.4084 | 0.2195 | 0.058* | |
C5 | 0.9109 (3) | 0.2693 (3) | 0.24219 (17) | 0.0420 (5) | |
H5 | 0.9242 | 0.2010 | 0.1715 | 0.050* | |
C6 | 0.7361 (3) | 0.2451 (3) | 0.31701 (16) | 0.0387 (4) | |
C7 | 0.5566 (3) | 0.1179 (3) | 0.28805 (19) | 0.0469 (5) | |
H7A | 0.5373 | 0.0596 | 0.3676 | 0.056* | |
H7B | 0.4178 | 0.1750 | 0.2615 | 0.056* | |
C8 | 0.3888 (3) | −0.0952 (3) | 0.14674 (19) | 0.0395 (5) | |
H8A | 0.2820 | −0.0258 | 0.0956 | 0.047* | |
H8B | 0.3203 | −0.1384 | 0.2201 | 0.047* | |
C9 | 0.4714 (3) | −0.2340 (2) | 0.06555 (16) | 0.0359 (4) | |
H9 | 0.4813 | −0.1938 | −0.0226 | 0.043* | |
C10 | 0.7077 (3) | −0.2710 (2) | 0.13021 (16) | 0.0371 (4) | |
H10 | 0.7130 | −0.3806 | 0.1702 | 0.045* | |
C11 | 0.7500 (3) | −0.1372 (3) | 0.23333 (17) | 0.0408 (5) | |
H11A | 0.7195 | −0.1779 | 0.3174 | 0.049* | |
H11B | 0.9032 | −0.0987 | 0.2389 | 0.049* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0299 (8) | 0.0321 (8) | 0.0458 (8) | −0.0001 (7) | 0.0055 (6) | −0.0030 (6) |
O1 | 0.0388 (8) | 0.0407 (8) | 0.0567 (7) | −0.0100 (6) | 0.0099 (6) | −0.0062 (6) |
O2 | 0.0317 (7) | 0.0791 (12) | 0.0574 (8) | 0.0028 (8) | 0.0111 (6) | −0.0130 (8) |
C1 | 0.0573 (13) | 0.0502 (14) | 0.0466 (11) | 0.0031 (11) | 0.0097 (9) | −0.0049 (9) |
C2 | 0.0732 (16) | 0.0519 (15) | 0.0531 (12) | 0.0015 (12) | −0.0049 (11) | −0.0135 (11) |
C3 | 0.0554 (14) | 0.0422 (13) | 0.0724 (13) | −0.0059 (11) | −0.0154 (11) | −0.0048 (11) |
C4 | 0.0393 (11) | 0.0412 (12) | 0.0639 (11) | −0.0001 (9) | 0.0010 (9) | 0.0071 (10) |
C5 | 0.0413 (11) | 0.0373 (11) | 0.0479 (9) | 0.0021 (9) | 0.0068 (8) | −0.0020 (8) |
C6 | 0.0412 (10) | 0.0329 (10) | 0.0419 (8) | 0.0043 (9) | 0.0038 (7) | −0.0011 (8) |
C7 | 0.0447 (12) | 0.0407 (11) | 0.0578 (11) | 0.0001 (10) | 0.0176 (10) | −0.0067 (10) |
C8 | 0.0293 (10) | 0.0364 (11) | 0.0527 (10) | 0.0002 (8) | 0.0043 (8) | −0.0003 (8) |
C9 | 0.0307 (9) | 0.0342 (11) | 0.0430 (8) | −0.0024 (8) | 0.0045 (7) | 0.0023 (8) |
C10 | 0.0316 (10) | 0.0351 (10) | 0.0447 (9) | 0.0036 (8) | 0.0046 (7) | 0.0017 (8) |
C11 | 0.0374 (11) | 0.0396 (11) | 0.0446 (9) | 0.0040 (9) | 0.0001 (7) | 0.0001 (8) |
Geometric parameters (Å, °)
N1—C8 | 1.463 (2) | C4—H4 | 0.9300 |
N1—C7 | 1.466 (2) | C5—C6 | 1.387 (3) |
N1—C11 | 1.473 (3) | C5—H5 | 0.9300 |
O1—C9 | 1.416 (2) | C6—C7 | 1.501 (3) |
O1—H1 | 0.8200 | C7—H7A | 0.9700 |
O2—C10 | 1.421 (2) | C7—H7B | 0.9700 |
O2—H2 | 0.8200 | C8—C9 | 1.521 (3) |
C1—C2 | 1.379 (3) | C8—H8A | 0.9700 |
C1—C6 | 1.393 (3) | C8—H8B | 0.9700 |
C1—H1A | 0.9300 | C9—C10 | 1.539 (2) |
C2—C3 | 1.384 (3) | C9—H9 | 0.9800 |
C2—H2A | 0.9300 | C10—C11 | 1.528 (3) |
C3—C4 | 1.378 (3) | C10—H10 | 0.9800 |
C3—H3 | 0.9300 | C11—H11A | 0.9700 |
C4—C5 | 1.385 (3) | C11—H11B | 0.9700 |
C8—N1—C7 | 111.39 (14) | C6—C7—H7B | 108.2 |
C8—N1—C11 | 102.61 (14) | H7A—C7—H7B | 107.3 |
C7—N1—C11 | 114.28 (14) | N1—C8—C9 | 102.85 (15) |
C9—O1—H1 | 109.5 | N1—C8—H8A | 111.2 |
C10—O2—H2 | 109.5 | C9—C8—H8A | 111.2 |
C2—C1—C6 | 121.6 (2) | N1—C8—H8B | 111.2 |
C2—C1—H1A | 119.2 | C9—C8—H8B | 111.2 |
C6—C1—H1A | 119.2 | H8A—C8—H8B | 109.1 |
C1—C2—C3 | 119.7 (2) | O1—C9—C8 | 109.99 (14) |
C1—C2—H2A | 120.1 | O1—C9—C10 | 114.91 (16) |
C3—C2—H2A | 120.1 | C8—C9—C10 | 104.09 (15) |
C4—C3—C2 | 119.6 (2) | O1—C9—H9 | 109.2 |
C4—C3—H3 | 120.2 | C8—C9—H9 | 109.2 |
C2—C3—H3 | 120.2 | C10—C9—H9 | 109.2 |
C3—C4—C5 | 120.3 (2) | O2—C10—C11 | 113.17 (16) |
C3—C4—H4 | 119.9 | O2—C10—C9 | 107.72 (13) |
C5—C4—H4 | 119.9 | C11—C10—C9 | 104.29 (15) |
C4—C5—C6 | 121.04 (19) | O2—C10—H10 | 110.5 |
C4—C5—H5 | 119.5 | C11—C10—H10 | 110.5 |
C6—C5—H5 | 119.5 | C9—C10—H10 | 110.5 |
C5—C6—C1 | 117.69 (19) | N1—C11—C10 | 104.06 (13) |
C5—C6—C7 | 123.90 (17) | N1—C11—H11A | 110.9 |
C1—C6—C7 | 118.38 (16) | C10—C11—H11A | 110.9 |
N1—C7—C6 | 116.51 (14) | N1—C11—H11B | 110.9 |
N1—C7—H7A | 108.2 | C10—C11—H11B | 110.9 |
C6—C7—H7A | 108.2 | H11A—C11—H11B | 109.0 |
N1—C7—H7B | 108.2 | ||
C6—C1—C2—C3 | −0.7 (3) | C7—N1—C8—C9 | −169.66 (15) |
C1—C2—C3—C4 | 0.7 (4) | C11—N1—C8—C9 | −46.96 (17) |
C2—C3—C4—C5 | −0.6 (3) | N1—C8—C9—O1 | 155.98 (15) |
C3—C4—C5—C6 | 0.5 (3) | N1—C8—C9—C10 | 32.37 (18) |
C4—C5—C6—C1 | −0.4 (3) | O1—C9—C10—O2 | 112.90 (17) |
C4—C5—C6—C7 | 177.2 (2) | C8—C9—C10—O2 | −126.76 (16) |
C2—C1—C6—C5 | 0.5 (3) | O1—C9—C10—C11 | −126.60 (16) |
C2—C1—C6—C7 | −177.25 (19) | C8—C9—C10—C11 | −6.25 (19) |
C8—N1—C7—C6 | −166.25 (16) | C8—N1—C11—C10 | 42.96 (18) |
C11—N1—C7—C6 | 78.0 (2) | C7—N1—C11—C10 | 163.69 (15) |
C5—C6—C7—N1 | 11.1 (3) | O2—C10—C11—N1 | 94.90 (18) |
C1—C6—C7—N1 | −171.29 (17) | C9—C10—C11—N1 | −21.88 (18) |
Hydrogen-bond geometry (Å, °)
Cg2 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.82 | 2.13 | 2.918 (2) | 162 |
O2—H2···O1ii | 0.82 | 2.14 | 2.914 (2) | 157 |
C10—H10···Cg2iii | 0.98 | 2.86 | 3.771 (2) | 155 |
Symmetry codes: (i) −x+1, y−1/2, −z; (ii) x+1, y, z; (iii) x, y−1, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2016).
References
- Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
- Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison,Wisconsin, USA.
- Inoguchi, K. & Achiwa, K. (1990). Chem. Pharm. Bull. 38, 818–820.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
- Nagel, U. (1984). Angew. Chem. Int. Ed.23, 435–436.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Tang, W. & Zhang, X. (2003). Chem. Rev.103, 3029–3069. [DOI] [PubMed]
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809055391/jj2016sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055391/jj2016Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report