Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 6;66(Pt 4):o747. doi: 10.1107/S1600536810007440

2-Methyl-N-(4-methyl­benzo­yl)benzene­sulfonamide

B Thimme Gowda a,*, Sabine Foro b, P A Suchetan a, Hartmut Fuess b
PMCID: PMC2984015  PMID: 21580592

Abstract

The asymmetric unit of the title compound, C15H15NO3S, contains two independent mol­ecules. The conformations of the N—C bonds in the C—SO2—NH—C(O) segments have gauche torsions with respect to the SO bonds. Further, the mol­ecules are twisted at the S atoms with torsion angles of −53.1 (2) and 61.2 (2)° in the two mol­ecules. The dihedral angles between the sulfonyl benzene rings and the —SO2—NH—C—O segments are 86.0 (1) and 87.9 (1)°. Furthermore, the dihedral angles between the sulfonyl and the benzoyl benzene rings are 88.1 (1) and 83.5 (1)° in the two mol­ecules. In the crystal, mol­ecules are linked by N—H⋯O(S) hydrogen bonds.

Related literature

For background to our study of the effect of ring and the side-chain substituents on the crystal structures of N-aromatic sulfonamides and for similar structures, see: Gowda et al. (2009; 2010); Suchetan et al. (2010).graphic file with name e-66-0o747-scheme1.jpg

Experimental

Crystal data

  • C15H15NO3S

  • M r = 289.34

  • Triclinic, Inline graphic

  • a = 10.9085 (8) Å

  • b = 12.1392 (9) Å

  • c = 12.3140 (9) Å

  • α = 118.846 (8)°

  • β = 95.965 (6)°

  • γ = 90.136 (6)°

  • V = 1417.98 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 299 K

  • 0.48 × 0.44 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD Detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.896, T max = 0.972

  • 9669 measured reflections

  • 5139 independent reflections

  • 4302 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.105

  • S = 1.05

  • 5139 reflections

  • 371 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810007440/bq2199sup1.cif

e-66-0o747-sup1.cif (25.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007440/bq2199Isup2.hkl

e-66-0o747-Isup2.hkl (251.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4i 0.82 (2) 2.18 (2) 2.978 (2) 165 (2)
N2—H2N⋯O2i 0.83 (2) 2.20 (2) 3.022 (2) 171 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

supplementary crystallographic information

Comment

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As a part of studying the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2009; 2010; Suchetan et al., 2010), the structure of 2-methyl-N-(4-methylbenzoyl)benzenesulfonamide (I) has been determined. The asymmetric unit of the structure contains two independent molecules (Fig. 1). The conformations of the N—C bonds in the C—SO2—NH—C(O) segments have gauche torsions with respect to the SO bonds. Further, the conformations of the N—H bonds in the C—SO2—NH—C(O) segments are anti to the C=O bonds, similar to those observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009), 2-methyl-N-(3-methylbenzoyl)benzenesulfonamide (III) (Gowda et al., 2010) and N-(4-chlorobenzoyl)4-methyl- benzenesulfonamide (IV) (Suchetan et al., 2010).

The molecules are twisted at the S atoms with the torsion angles of -53.1 (2)° and 61.2 (2)° in the two independent molecules. The dihedral angles between the sulfonyl benzene rings and the —SO2—NH—C—O segments are 86.0 (1)° (molecule 1) and 87.9 (1)° (molecule 2), compared to the values of 86.5 (1) in (II), 83.1 (1)° in (III), and 83.6 (1)° (molecule 1) and 81.0 (1)° (molecule 2) in (IV). Furthermore, the dihedral angles between the benzene rings are 88.1 (1)° (molecule 1) and 83.5 (1)° (molecule 2) in (I), compared to the values of 80.3 (1) in (II), 74.8 (1)° in (III), and 81.0 (1)° (molecule 1) and 76.3 (1)° (molecule 2) in (IV). The packing of molecules linked by of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

Experimental

The title compound was prepared by refluxing a mixture of 4-methylbenzoic acid, 2-methylbenzenesulfonamide and phosphorous oxy chloride for 5 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid, 2-methyl-N-(4-methylbenzoyl)benzenesulfonamide obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The filtered and dried compound was recrystallized to the constant melting point. Plate like colorless single crystals of the title compound used in X-ray diffraction studies were grown from a slow evaporation of its toluene solution at room temperature.

Refinement

The H atoms of the NH groups were located in a difference map and later restrained to N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C15H15NO3S Z = 4
Mr = 289.34 F(000) = 608
Triclinic, P1 Dx = 1.355 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.9085 (8) Å Cell parameters from 5092 reflections
b = 12.1392 (9) Å θ = 2.5–27.9°
c = 12.3140 (9) Å µ = 0.23 mm1
α = 118.846 (8)° T = 299 K
β = 95.965 (6)° Plate, colourless
γ = 90.136 (6)° 0.48 × 0.44 × 0.12 mm
V = 1417.98 (18) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD Detector 5139 independent reflections
Radiation source: fine-focus sealed tube 4302 reflections with I > 2σ(I)
graphite Rint = 0.013
Rotation method data acquisition using ω and phi scans θmax = 25.4°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −10→13
Tmin = 0.896, Tmax = 0.972 k = −14→14
9669 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.5865P] where P = (Fo2 + 2Fc2)/3
5139 reflections (Δ/σ)max = 0.020
371 parameters Δρmax = 0.32 e Å3
2 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.26147 (4) 0.15226 (4) 0.32500 (4) 0.03838 (13)
O1 0.18593 (13) 0.11786 (14) 0.39241 (14) 0.0545 (4)
O2 0.29413 (13) 0.05502 (12) 0.20811 (12) 0.0494 (4)
O3 0.19313 (14) 0.40481 (14) 0.48858 (12) 0.0534 (4)
N1 0.19457 (15) 0.25319 (14) 0.28899 (14) 0.0391 (4)
H1N 0.1743 (19) 0.2237 (19) 0.2135 (15) 0.047*
C1 0.39707 (17) 0.23373 (17) 0.42492 (17) 0.0390 (4)
C2 0.49086 (19) 0.2806 (2) 0.38683 (19) 0.0498 (5)
C3 0.5950 (2) 0.3360 (2) 0.4727 (2) 0.0669 (7)
H3 0.6600 0.3679 0.4507 0.080*
C4 0.6055 (2) 0.3455 (3) 0.5890 (2) 0.0717 (7)
H4 0.6770 0.3829 0.6439 0.086*
C5 0.5115 (2) 0.3006 (2) 0.6245 (2) 0.0653 (6)
H5 0.5187 0.3074 0.7035 0.078*
C6 0.4062 (2) 0.2453 (2) 0.54305 (18) 0.0487 (5)
H6 0.3412 0.2157 0.5671 0.058*
C7 0.16838 (17) 0.37305 (17) 0.37906 (16) 0.0381 (4)
C8 0.11559 (17) 0.45739 (16) 0.33317 (16) 0.0374 (4)
C9 0.07548 (18) 0.57174 (18) 0.42108 (19) 0.0453 (5)
H9 0.0799 0.5910 0.5043 0.054*
C10 0.0294 (2) 0.65630 (18) 0.3854 (2) 0.0524 (5)
H10 0.0013 0.7314 0.4448 0.063*
C11 0.0240 (2) 0.63239 (19) 0.2635 (2) 0.0528 (5)
C12 0.0645 (2) 0.5187 (2) 0.1765 (2) 0.0560 (6)
H12 0.0623 0.5010 0.0939 0.067*
C13 0.1078 (2) 0.43154 (18) 0.20990 (18) 0.0468 (5)
H13 0.1321 0.3548 0.1494 0.056*
C14 0.4853 (3) 0.2737 (3) 0.2615 (2) 0.0750 (8)
H14A 0.4184 0.3208 0.2521 0.090*
H14B 0.4724 0.1874 0.1971 0.090*
H14C 0.5616 0.3086 0.2552 0.090*
C15 −0.0234 (3) 0.7268 (2) 0.2253 (3) 0.0799 (8)
H15A 0.0410 0.7900 0.2455 0.096*
H15B −0.0925 0.7657 0.2690 0.096*
H15C −0.0489 0.6846 0.1369 0.096*
S2 0.86754 (5) −0.02893 (4) 0.09718 (4) 0.03994 (14)
O4 0.82660 (15) −0.14503 (12) −0.01285 (12) 0.0534 (4)
O5 0.99533 (14) −0.00545 (16) 0.13898 (14) 0.0603 (4)
O6 0.87360 (17) 0.24170 (13) 0.25506 (13) 0.0618 (4)
N2 0.81576 (16) 0.07925 (14) 0.06276 (14) 0.0394 (4)
H2N 0.7862 (19) 0.0503 (19) −0.0110 (15) 0.047*
C16 0.78770 (19) −0.01250 (16) 0.22121 (16) 0.0394 (4)
C17 0.6610 (2) −0.04204 (19) 0.2040 (2) 0.0492 (5)
C18 0.6095 (3) −0.0268 (2) 0.3090 (3) 0.0672 (7)
H18 0.5252 −0.0448 0.3021 0.081*
C19 0.6791 (3) 0.0136 (2) 0.4219 (2) 0.0740 (8)
H19 0.6416 0.0225 0.4899 0.089*
C20 0.8024 (3) 0.0410 (2) 0.4359 (2) 0.0670 (7)
H20 0.8491 0.0672 0.5128 0.080*
C21 0.8582 (2) 0.02962 (18) 0.33558 (18) 0.0504 (5)
H21 0.9422 0.0501 0.3448 0.060*
C22 0.82979 (18) 0.20707 (17) 0.14844 (17) 0.0410 (4)
C23 0.78477 (18) 0.29425 (17) 0.10290 (17) 0.0398 (4)
C24 0.7648 (2) 0.41595 (19) 0.1922 (2) 0.0531 (5)
H24 0.7803 0.4398 0.2766 0.064*
C25 0.7219 (2) 0.5015 (2) 0.1563 (2) 0.0610 (6)
H25 0.7076 0.5823 0.2173 0.073*
C26 0.6995 (2) 0.4704 (2) 0.0320 (2) 0.0567 (6)
C27 0.7227 (2) 0.3500 (2) −0.0563 (2) 0.0609 (6)
H27 0.7106 0.3276 −0.1404 0.073*
C28 0.7637 (2) 0.26236 (19) −0.02221 (19) 0.0513 (5)
H28 0.7772 0.1814 −0.0834 0.062*
C29 0.5796 (2) −0.0874 (3) 0.0826 (2) 0.0685 (7)
H29A 0.5912 −0.0308 0.0502 0.082*
H29B 0.4949 −0.0901 0.0962 0.082*
H29C 0.6008 −0.1702 0.0238 0.082*
C30 0.6541 (3) 0.5661 (3) −0.0056 (3) 0.0815 (8)
H30A 0.5804 0.5998 0.0317 0.098*
H30B 0.6365 0.5262 −0.0949 0.098*
H30C 0.7166 0.6331 0.0225 0.098*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0424 (3) 0.0321 (2) 0.0363 (2) −0.00049 (18) −0.00347 (19) 0.01476 (19)
O1 0.0526 (9) 0.0604 (9) 0.0576 (9) −0.0133 (7) −0.0069 (7) 0.0368 (8)
O2 0.0572 (9) 0.0328 (7) 0.0423 (7) 0.0068 (6) −0.0058 (6) 0.0078 (6)
O3 0.0694 (10) 0.0543 (9) 0.0313 (7) 0.0173 (7) 0.0115 (6) 0.0156 (6)
N1 0.0493 (9) 0.0338 (8) 0.0276 (8) 0.0066 (7) −0.0003 (7) 0.0106 (7)
C1 0.0397 (10) 0.0329 (9) 0.0374 (10) 0.0011 (7) −0.0001 (8) 0.0123 (8)
C2 0.0490 (12) 0.0469 (11) 0.0472 (11) −0.0026 (9) 0.0048 (9) 0.0182 (9)
C3 0.0514 (13) 0.0710 (16) 0.0677 (16) −0.0165 (12) −0.0002 (11) 0.0269 (13)
C4 0.0541 (14) 0.0795 (17) 0.0605 (15) −0.0170 (12) −0.0168 (12) 0.0221 (13)
C5 0.0617 (15) 0.0782 (17) 0.0444 (12) −0.0048 (12) −0.0100 (11) 0.0238 (12)
C6 0.0490 (12) 0.0526 (12) 0.0400 (11) −0.0006 (9) −0.0003 (9) 0.0201 (9)
C7 0.0394 (10) 0.0374 (10) 0.0324 (10) 0.0041 (8) 0.0083 (8) 0.0121 (8)
C8 0.0383 (10) 0.0315 (9) 0.0358 (9) 0.0022 (7) 0.0060 (7) 0.0108 (8)
C9 0.0480 (11) 0.0370 (10) 0.0410 (10) 0.0031 (8) 0.0119 (9) 0.0099 (8)
C10 0.0547 (12) 0.0299 (10) 0.0612 (14) 0.0085 (9) 0.0158 (10) 0.0113 (9)
C11 0.0576 (13) 0.0351 (10) 0.0616 (14) 0.0066 (9) 0.0018 (10) 0.0213 (10)
C12 0.0790 (16) 0.0432 (11) 0.0425 (11) 0.0102 (11) 0.0011 (11) 0.0192 (9)
C13 0.0642 (13) 0.0321 (10) 0.0360 (10) 0.0107 (9) 0.0056 (9) 0.0100 (8)
C14 0.0736 (17) 0.093 (2) 0.0635 (16) −0.0173 (15) 0.0087 (13) 0.0424 (15)
C15 0.099 (2) 0.0528 (14) 0.089 (2) 0.0193 (14) 0.0012 (16) 0.0377 (14)
S2 0.0519 (3) 0.0363 (2) 0.0295 (2) 0.0112 (2) 0.00847 (19) 0.01357 (19)
O4 0.0870 (11) 0.0333 (7) 0.0325 (7) 0.0155 (7) 0.0102 (7) 0.0095 (6)
O5 0.0500 (9) 0.0811 (11) 0.0515 (9) 0.0161 (8) 0.0107 (7) 0.0325 (8)
O6 0.1017 (13) 0.0407 (8) 0.0329 (8) −0.0081 (8) −0.0062 (8) 0.0127 (6)
N2 0.0574 (10) 0.0313 (8) 0.0256 (7) 0.0011 (7) 0.0023 (7) 0.0112 (6)
C16 0.0574 (12) 0.0287 (9) 0.0347 (9) 0.0100 (8) 0.0114 (8) 0.0164 (8)
C17 0.0594 (13) 0.0407 (11) 0.0552 (12) 0.0117 (9) 0.0148 (10) 0.0277 (10)
C18 0.0759 (17) 0.0620 (15) 0.0802 (18) 0.0143 (12) 0.0339 (14) 0.0427 (14)
C19 0.117 (2) 0.0593 (15) 0.0607 (16) 0.0138 (15) 0.0431 (16) 0.0346 (13)
C20 0.113 (2) 0.0522 (13) 0.0367 (12) 0.0010 (14) 0.0115 (13) 0.0217 (10)
C21 0.0743 (15) 0.0393 (10) 0.0363 (10) 0.0023 (10) 0.0055 (10) 0.0176 (9)
C22 0.0527 (11) 0.0329 (9) 0.0318 (10) −0.0041 (8) 0.0071 (8) 0.0110 (8)
C23 0.0464 (11) 0.0326 (9) 0.0383 (10) −0.0030 (8) 0.0080 (8) 0.0151 (8)
C24 0.0708 (14) 0.0391 (11) 0.0442 (11) 0.0037 (10) 0.0172 (10) 0.0141 (9)
C25 0.0727 (16) 0.0378 (11) 0.0713 (16) 0.0128 (10) 0.0285 (13) 0.0216 (11)
C26 0.0493 (12) 0.0495 (12) 0.0794 (16) 0.0028 (10) 0.0068 (11) 0.0377 (12)
C27 0.0815 (17) 0.0501 (13) 0.0525 (13) −0.0046 (11) −0.0090 (12) 0.0293 (11)
C28 0.0741 (15) 0.0347 (10) 0.0398 (11) −0.0019 (10) −0.0001 (10) 0.0153 (9)
C29 0.0557 (14) 0.0772 (17) 0.0816 (18) 0.0049 (12) 0.0001 (12) 0.0473 (15)
C30 0.0750 (18) 0.0709 (17) 0.119 (2) 0.0144 (14) 0.0097 (16) 0.0620 (18)

Geometric parameters (Å, °)

S1—O1 1.4204 (15) S2—O5 1.4131 (16)
S1—O2 1.4357 (14) S2—O4 1.4318 (14)
S1—N1 1.6407 (16) S2—N2 1.6474 (16)
S1—C1 1.7665 (18) S2—C16 1.7648 (18)
O3—C7 1.209 (2) O6—C22 1.210 (2)
N1—C7 1.393 (2) N2—C22 1.389 (2)
N1—H1N 0.823 (15) N2—H2N 0.826 (15)
C1—C6 1.385 (3) C16—C21 1.384 (3)
C1—C2 1.394 (3) C16—C17 1.395 (3)
C2—C3 1.386 (3) C17—C18 1.395 (3)
C2—C14 1.500 (3) C17—C29 1.501 (3)
C3—C4 1.372 (4) C18—C19 1.368 (4)
C3—H3 0.9300 C18—H18 0.9300
C4—C5 1.364 (4) C19—C20 1.358 (4)
C4—H4 0.9300 C19—H19 0.9300
C5—C6 1.372 (3) C20—C21 1.381 (3)
C5—H5 0.9300 C20—H20 0.9300
C6—H6 0.9300 C21—H21 0.9300
C7—C8 1.481 (3) C22—C23 1.481 (3)
C8—C13 1.387 (3) C23—C24 1.387 (3)
C8—C9 1.393 (2) C23—C28 1.388 (3)
C9—C10 1.375 (3) C24—C25 1.376 (3)
C9—H9 0.9300 C24—H24 0.9300
C10—C11 1.379 (3) C25—C26 1.382 (3)
C10—H10 0.9300 C25—H25 0.9300
C11—C12 1.386 (3) C26—C27 1.381 (3)
C11—C15 1.508 (3) C26—C30 1.511 (3)
C12—C13 1.376 (3) C27—C28 1.379 (3)
C12—H12 0.9300 C27—H27 0.9300
C13—H13 0.9300 C28—H28 0.9300
C14—H14A 0.9600 C29—H29A 0.9600
C14—H14B 0.9600 C29—H29B 0.9600
C14—H14C 0.9600 C29—H29C 0.9600
C15—H15A 0.9600 C30—H30A 0.9600
C15—H15B 0.9600 C30—H30B 0.9600
C15—H15C 0.9600 C30—H30C 0.9600
O1—S1—O2 118.37 (9) O5—S2—O4 118.33 (9)
O1—S1—N1 110.91 (9) O5—S2—N2 110.40 (9)
O2—S1—N1 103.89 (8) O4—S2—N2 103.58 (8)
O1—S1—C1 108.05 (9) O5—S2—C16 108.84 (9)
O2—S1—C1 109.46 (9) O4—S2—C16 109.58 (9)
N1—S1—C1 105.41 (8) N2—S2—C16 105.28 (8)
C7—N1—S1 122.55 (13) C22—N2—S2 122.31 (13)
C7—N1—H1N 124.3 (15) C22—N2—H2N 124.1 (15)
S1—N1—H1N 113.0 (15) S2—N2—H2N 113.5 (15)
C6—C1—C2 121.80 (18) C21—C16—C17 122.16 (19)
C6—C1—S1 115.72 (15) C21—C16—S2 116.18 (16)
C2—C1—S1 122.45 (15) C17—C16—S2 121.65 (15)
C3—C2—C1 116.1 (2) C18—C17—C16 116.0 (2)
C3—C2—C14 119.5 (2) C18—C17—C29 119.4 (2)
C1—C2—C14 124.38 (19) C16—C17—C29 124.64 (19)
C4—C3—C2 122.3 (2) C19—C18—C17 122.0 (3)
C4—C3—H3 118.9 C19—C18—H18 119.0
C2—C3—H3 118.9 C17—C18—H18 119.0
C5—C4—C3 120.4 (2) C20—C19—C18 120.8 (2)
C5—C4—H4 119.8 C20—C19—H19 119.6
C3—C4—H4 119.8 C18—C19—H19 119.6
C4—C5—C6 119.6 (2) C19—C20—C21 119.8 (2)
C4—C5—H5 120.2 C19—C20—H20 120.1
C6—C5—H5 120.2 C21—C20—H20 120.1
C5—C6—C1 119.8 (2) C20—C21—C16 119.3 (2)
C5—C6—H6 120.1 C20—C21—H21 120.4
C1—C6—H6 120.1 C16—C21—H21 120.4
O3—C7—N1 119.72 (17) O6—C22—N2 119.92 (17)
O3—C7—C8 123.46 (16) O6—C22—C23 123.46 (17)
N1—C7—C8 116.76 (15) N2—C22—C23 116.58 (16)
C13—C8—C9 118.46 (18) C24—C23—C28 118.56 (19)
C13—C8—C7 124.17 (16) C24—C23—C22 117.17 (17)
C9—C8—C7 117.33 (17) C28—C23—C22 124.26 (17)
C10—C9—C8 120.27 (19) C25—C24—C23 120.2 (2)
C10—C9—H9 119.9 C25—C24—H24 119.9
C8—C9—H9 119.9 C23—C24—H24 119.9
C9—C10—C11 121.55 (18) C24—C25—C26 121.7 (2)
C9—C10—H10 119.2 C24—C25—H25 119.1
C11—C10—H10 119.2 C26—C25—H25 119.1
C10—C11—C12 117.92 (19) C27—C26—C25 117.7 (2)
C10—C11—C15 121.4 (2) C27—C26—C30 121.3 (2)
C12—C11—C15 120.6 (2) C25—C26—C30 121.0 (2)
C13—C12—C11 121.3 (2) C28—C27—C26 121.4 (2)
C13—C12—H12 119.3 C28—C27—H27 119.3
C11—C12—H12 119.3 C26—C27—H27 119.3
C12—C13—C8 120.41 (18) C27—C28—C23 120.39 (19)
C12—C13—H13 119.8 C27—C28—H28 119.8
C8—C13—H13 119.8 C23—C28—H28 119.8
C2—C14—H14A 109.5 C17—C29—H29A 109.5
C2—C14—H14B 109.5 C17—C29—H29B 109.5
H14A—C14—H14B 109.5 H29A—C29—H29B 109.5
C2—C14—H14C 109.5 C17—C29—H29C 109.5
H14A—C14—H14C 109.5 H29A—C29—H29C 109.5
H14B—C14—H14C 109.5 H29B—C29—H29C 109.5
C11—C15—H15A 109.5 C26—C30—H30A 109.5
C11—C15—H15B 109.5 C26—C30—H30B 109.5
H15A—C15—H15B 109.5 H30A—C30—H30B 109.5
C11—C15—H15C 109.5 C26—C30—H30C 109.5
H15A—C15—H15C 109.5 H30A—C30—H30C 109.5
H15B—C15—H15C 109.5 H30B—C30—H30C 109.5
O1—S1—N1—C7 63.65 (17) O5—S2—N2—C22 −56.08 (17)
O2—S1—N1—C7 −168.15 (15) O4—S2—N2—C22 176.27 (15)
C1—S1—N1—C7 −53.06 (17) C16—S2—N2—C22 61.22 (17)
O1—S1—C1—C6 1.77 (18) O5—S2—C16—C21 5.46 (17)
O2—S1—C1—C6 −128.41 (15) O4—S2—C16—C21 136.28 (15)
N1—S1—C1—C6 120.41 (15) N2—S2—C16—C21 −112.89 (15)
O1—S1—C1—C2 −179.98 (16) O5—S2—C16—C17 −173.72 (15)
O2—S1—C1—C2 49.84 (19) O4—S2—C16—C17 −42.90 (17)
N1—S1—C1—C2 −61.34 (18) N2—S2—C16—C17 67.92 (17)
C6—C1—C2—C3 1.8 (3) C21—C16—C17—C18 −0.1 (3)
S1—C1—C2—C3 −176.38 (17) S2—C16—C17—C18 178.99 (15)
C6—C1—C2—C14 −178.5 (2) C21—C16—C17—C29 179.6 (2)
S1—C1—C2—C14 3.4 (3) S2—C16—C17—C29 −1.2 (3)
C1—C2—C3—C4 −0.5 (4) C16—C17—C18—C19 −0.5 (3)
C14—C2—C3—C4 179.7 (3) C29—C17—C18—C19 179.7 (2)
C2—C3—C4—C5 −0.5 (4) C17—C18—C19—C20 0.1 (4)
C3—C4—C5—C6 0.2 (4) C18—C19—C20—C21 0.9 (4)
C4—C5—C6—C1 1.1 (4) C19—C20—C21—C16 −1.5 (3)
C2—C1—C6—C5 −2.1 (3) C17—C16—C21—C20 1.2 (3)
S1—C1—C6—C5 176.18 (18) S2—C16—C21—C20 −178.02 (16)
S1—N1—C7—O3 −1.4 (3) S2—N2—C22—O6 −5.3 (3)
S1—N1—C7—C8 175.96 (13) S2—N2—C22—C23 176.83 (13)
O3—C7—C8—C13 167.5 (2) O6—C22—C23—C24 −15.9 (3)
N1—C7—C8—C13 −9.7 (3) N2—C22—C23—C24 161.89 (18)
O3—C7—C8—C9 −10.1 (3) O6—C22—C23—C28 163.0 (2)
N1—C7—C8—C9 172.63 (17) N2—C22—C23—C28 −19.2 (3)
C13—C8—C9—C10 0.0 (3) C28—C23—C24—C25 1.6 (3)
C7—C8—C9—C10 177.76 (17) C22—C23—C24—C25 −179.42 (19)
C8—C9—C10—C11 −1.5 (3) C23—C24—C25—C26 −1.1 (4)
C9—C10—C11—C12 1.2 (3) C24—C25—C26—C27 −0.6 (4)
C9—C10—C11—C15 −178.4 (2) C24—C25—C26—C30 −179.1 (2)
C10—C11—C12—C13 0.6 (4) C25—C26—C27—C28 1.8 (4)
C15—C11—C12—C13 −179.9 (2) C30—C26—C27—C28 −179.7 (2)
C11—C12—C13—C8 −2.0 (3) C26—C27—C28—C23 −1.2 (4)
C9—C8—C13—C12 1.7 (3) C24—C23—C28—C27 −0.5 (3)
C7—C8—C13—C12 −175.89 (19) C22—C23—C28—C27 −179.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O4i 0.82 (2) 2.17 (2) 2.978 (2) 165 (2)
N2—H2N···O2i 0.83 (2) 2.20 (2) 3.022 (2) 171 (2)

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2199).

References

  1. Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516. [DOI] [PMC free article] [PubMed]
  2. Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o433. [DOI] [PMC free article] [PubMed]
  3. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o327. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810007440/bq2199sup1.cif

e-66-0o747-sup1.cif (25.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007440/bq2199Isup2.hkl

e-66-0o747-Isup2.hkl (251.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES