Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 27;66(Pt 4):o960. doi: 10.1107/S1600536810011177

1-[(2-Chloro-7-methyl-3-quinol­yl)meth­yl]pyridin-2(1H)-one

S Mohana Roopan a, F Nawaz Khan a, Atul Kumar Kushwaha a, Venkatesha R Hathwar b, Mehmet Akkurt c,*
PMCID: PMC2984016  PMID: 21580763

Abstract

In the title compound, C16H13ClN2O, the quinoline ring system is essentially planar, with a maximum deviation of 0.021 (2) Å. The pyridone ring is oriented at a dihedral angle of 85.93 (6)° with respect to the quinoline ring system. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules along the b axis. Weak π–π stacking inter­actions [centroid–centroid distances = 3.7218 (9) and 3.6083 (9) Å] are also observed.

Related literature

For related structures, see: Arman et al. (2009); Clegg & Nichol (2004); Nichol & Clegg (2005). For the synthesis of 2-pyridone derivatives, see: Conreaux et al. (2005); Roopan & Khan (2009); Roopan et al. (2010).graphic file with name e-66-0o960-scheme1.jpg

Experimental

Crystal data

  • C16H13ClN2O

  • M r = 284.73

  • Monoclinic, Inline graphic

  • a = 11.8934 (3) Å

  • b = 11.1092 (3) Å

  • c = 21.2858 (6) Å

  • β = 102.413 (3)°

  • V = 2746.67 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 295 K

  • 0.26 × 0.21 × 0.18 mm

Data collection

  • Oxford Xcalibur diffractometer with an Eos (Nova) CCD detector

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009) T min = 0.932, T max = 0.952

  • 13638 measured reflections

  • 2556 independent reflections

  • 1893 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.095

  • S = 1.10

  • 2556 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810011177/is2533sup1.cif

e-66-0o960-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011177/is2533Isup2.hkl

e-66-0o960-Isup2.hkl (123.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.93 2.37 3.299 (2) 173

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the FIST program for the data collection at SSCU, IISc, Bangalore and Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

The pyridone analogues such as naturally occurring mappicine based molecule have been focused of great interest by reason of their diversified biological activities. N-alkylated 2-pyridones are important intermediates in the synthesis of alkaloids as illustrated by the recent synthetic approaches toward the mappicine family. Thus, modifications of biologically active mappicine synthons may lead to achieve the highly expected effective drugs (Roopan & Khan, 2009). Having succeeded in developing a practical, alternative synthesis of pyridine (Conreaux et al., 2005), we then focused our attention on the general applicability of the N-alkylation (Roopan et al., 2010) of pyridones by mean of the t-BuOK/THF system In connection with the program of synthesis of 2-pyridone analogues, we report herein the synthesis of 1-[(2-chloro-7-methylquinolin-3yl)-methyl]-pyridine-2(1H)-one.

In the title molecule, the quinoline ring system (N1/C1–C9) is almost planar, with maximum deviations of 0.021 (1) Å for N1 and -0.021 (2) Å for C7 (Fig. 1). The pyridone ring (N2/C11—C15) is oriented at a dihedral angle of 85.93 (6)° with respect to the quinoline ring system. In the crystal structure, intermolecular C—H···O hydrogen bonds contribute to the stability of the structure, linking the molecules along the [010] direction (Table 1 and Fig. 2). Weak π–π stacking interactions are also observed [Cg1···Cg3(3/2-x, 1/2-y, -z) = 3.7218 (9), where Cg1 and Cg3 are the centroids of the N1/C1–C3/C8/C9 and C4–C9 rings, respectively; Cg2···Cg2(2-x, y, 1/2-z) = 3.6083 (9) Å, where Cg2 is a centroid of the N2/C11–C15 ring].

Experimental

To a mixed well solution of 2-pyridone (95 mg, 1 mmol, in 2 ml of DMF), KOtBu (112 mg, 1 mmol, in 10 ml THF) and 2-chloro-3-(chloromethyl)-7-methylquinoline (226 mg, 1 mmol) were added and the resulting mixture was refluxed at 343 K for 1 h. After the completion of the reaction, cooled and removed the excess of solvent under reduced pressure. Crushed ice was mixed with the residue. White solid was formed, filtered, dried and purified by column chromatography using hexane and ethylacetate as the eluant. Crystals of suitable quality were grown by solvent evaporation from a diethylether solution.

Refinement

H atoms were positioned geometrically, with C—H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Figures

Fig. 1.

Fig. 1.

View of the title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

View of the packing diagram and the hydrogen bonding interactions of the title compound down the a axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C16H13ClN2O F(000) = 1184
Mr = 284.73 Dx = 1.377 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 985 reflections
a = 11.8934 (3) Å θ = 3.4–25.5°
b = 11.1092 (3) Å µ = 0.27 mm1
c = 21.2858 (6) Å T = 295 K
β = 102.413 (3)° Block, colourless
V = 2746.67 (13) Å3 0.26 × 0.21 × 0.18 mm
Z = 8

Data collection

Oxford Xcalibur diffractometer with an Eos (Nova) CCD detector 2556 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1893 reflections with I > 2σ(I)
graphite Rint = 0.025
ω scans θmax = 25.5°, θmin = 3.4°
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009) h = −14→14
Tmin = 0.932, Tmax = 0.952 k = −13→13
13638 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.1075P] where P = (Fo2 + 2Fc2)/3
2556 reflections (Δ/σ)max = 0.001
182 parameters Δρmax = 0.12 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.09208 (3) 0.30078 (4) 0.05639 (2) 0.0632 (2)
O1 0.85807 (10) 0.41006 (11) 0.21457 (5) 0.0685 (5)
N1 0.89822 (11) 0.31396 (11) −0.02677 (6) 0.0489 (5)
N2 0.92375 (10) 0.56671 (11) 0.16368 (5) 0.0467 (4)
C1 0.95261 (12) 0.35624 (13) 0.02798 (7) 0.0459 (5)
C2 0.91154 (12) 0.44280 (13) 0.06637 (7) 0.0434 (5)
C3 0.80426 (12) 0.48690 (13) 0.04162 (7) 0.0460 (5)
C4 0.62855 (14) 0.49071 (14) −0.04533 (8) 0.0542 (6)
C5 0.56786 (14) 0.44843 (16) −0.10296 (8) 0.0602 (6)
C6 0.61864 (16) 0.35797 (17) −0.13404 (8) 0.0648 (7)
C7 0.72499 (15) 0.31365 (15) −0.10943 (7) 0.0580 (6)
C8 0.78938 (13) 0.35771 (14) −0.05035 (7) 0.0475 (5)
C9 0.73932 (12) 0.44607 (13) −0.01767 (7) 0.0447 (5)
C10 0.98427 (13) 0.48243 (15) 0.13024 (7) 0.0513 (5)
C11 0.92446 (14) 0.68655 (15) 0.14990 (8) 0.0595 (6)
C12 0.86613 (16) 0.76605 (17) 0.17753 (9) 0.0705 (7)
C13 0.80463 (15) 0.72478 (18) 0.22262 (8) 0.0688 (7)
C14 0.80364 (13) 0.60698 (17) 0.23677 (8) 0.0593 (6)
C15 0.86079 (13) 0.51932 (16) 0.20637 (7) 0.0503 (6)
C16 0.44951 (15) 0.49594 (19) −0.13245 (9) 0.0845 (8)
H3 0.77340 0.54520 0.06440 0.0550*
H4 0.59630 0.55000 −0.02390 0.0650*
H6 0.57750 0.32750 −0.17290 0.0780*
H7 0.75570 0.25410 −0.13150 0.0700*
H10A 1.00650 0.41230 0.15720 0.0620*
H10B 1.05400 0.52020 0.12310 0.0620*
H11 0.96660 0.71350 0.12060 0.0710*
H12 0.86630 0.84730 0.16710 0.0850*
H13 0.76440 0.77910 0.24280 0.0820*
H14 0.76400 0.58190 0.26770 0.0710*
H16A 0.43010 0.55940 −0.10600 0.1270*
H16B 0.39420 0.43210 −0.13540 0.1270*
H16C 0.44880 0.52660 −0.17470 0.1270*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0530 (3) 0.0666 (3) 0.0737 (3) 0.0066 (2) 0.0219 (2) 0.0046 (2)
O1 0.0847 (9) 0.0633 (8) 0.0632 (8) −0.0139 (7) 0.0289 (6) 0.0034 (6)
N1 0.0569 (8) 0.0505 (8) 0.0446 (8) −0.0072 (6) 0.0228 (6) −0.0011 (6)
N2 0.0474 (7) 0.0559 (8) 0.0375 (7) −0.0067 (6) 0.0108 (6) −0.0030 (6)
C1 0.0485 (9) 0.0466 (9) 0.0475 (9) −0.0040 (7) 0.0214 (7) 0.0056 (7)
C2 0.0482 (9) 0.0476 (9) 0.0372 (8) −0.0069 (7) 0.0154 (7) 0.0024 (6)
C3 0.0492 (9) 0.0486 (9) 0.0422 (9) −0.0028 (7) 0.0143 (7) −0.0033 (7)
C4 0.0544 (10) 0.0542 (10) 0.0527 (10) −0.0062 (8) 0.0085 (8) 0.0039 (8)
C5 0.0572 (10) 0.0661 (11) 0.0532 (11) −0.0165 (9) 0.0030 (8) 0.0139 (9)
C6 0.0747 (12) 0.0765 (12) 0.0406 (10) −0.0307 (10) 0.0064 (9) 0.0007 (9)
C7 0.0726 (12) 0.0615 (11) 0.0436 (10) −0.0180 (9) 0.0205 (9) −0.0052 (8)
C8 0.0578 (10) 0.0490 (9) 0.0392 (9) −0.0138 (8) 0.0183 (7) 0.0023 (7)
C9 0.0495 (9) 0.0466 (9) 0.0394 (9) −0.0080 (7) 0.0125 (7) 0.0033 (7)
C10 0.0462 (9) 0.0643 (10) 0.0449 (9) −0.0019 (8) 0.0131 (7) −0.0028 (8)
C11 0.0643 (11) 0.0594 (11) 0.0558 (11) −0.0124 (9) 0.0150 (8) 0.0015 (8)
C12 0.0798 (13) 0.0590 (11) 0.0725 (13) −0.0027 (10) 0.0158 (11) −0.0053 (9)
C13 0.0641 (11) 0.0784 (14) 0.0624 (12) 0.0046 (10) 0.0105 (9) −0.0214 (10)
C14 0.0525 (10) 0.0839 (13) 0.0437 (9) −0.0086 (9) 0.0153 (8) −0.0137 (9)
C15 0.0482 (9) 0.0649 (11) 0.0367 (9) −0.0122 (8) 0.0069 (7) −0.0054 (8)
C16 0.0655 (13) 0.0976 (16) 0.0791 (14) −0.0176 (11) −0.0096 (11) 0.0184 (12)

Geometric parameters (Å, °)

Cl1—C1 1.7509 (15) C11—C12 1.335 (3)
O1—C15 1.228 (2) C12—C13 1.403 (3)
N1—C1 1.2935 (19) C13—C14 1.344 (3)
N1—C8 1.373 (2) C14—C15 1.421 (2)
N2—C10 1.457 (2) C3—H3 0.9300
N2—C11 1.364 (2) C4—H4 0.9300
N2—C15 1.3986 (19) C6—H6 0.9300
C1—C2 1.415 (2) C7—H7 0.9300
C2—C3 1.363 (2) C10—H10A 0.9700
C2—C10 1.512 (2) C10—H10B 0.9700
C3—C9 1.406 (2) C11—H11 0.9300
C4—C5 1.366 (2) C12—H12 0.9300
C4—C9 1.412 (2) C13—H13 0.9300
C5—C6 1.409 (3) C14—H14 0.9300
C5—C16 1.508 (3) C16—H16A 0.9600
C6—C7 1.354 (3) C16—H16B 0.9600
C7—C8 1.412 (2) C16—H16C 0.9600
C8—C9 1.407 (2)
Cl1···C9i 3.6496 (15) C15···C10iv 3.592 (2)
Cl1···C5ii 3.6161 (18) C15···C15iv 3.431 (2)
Cl1···C3i 3.5414 (15) C16···C14vi 3.526 (3)
Cl1···H10A 2.8500 C5···H12vii 2.8400
Cl1···H10B 2.9100 C6···H14viii 3.0600
Cl1···H16Bii 3.0700 C7···H14viii 2.9900
O1···C2 3.3690 (18) C8···H10Bi 2.9900
O1···C7ii 3.348 (2) C11···H3 2.7600
O1···C13iii 3.299 (2) C14···H16Bvi 2.8600
O1···H10A 2.3500 C15···H3 2.9900
O1···H13iii 2.3700 C16···H12vii 3.0100
O1···H10Aiv 2.8600 H3···N2 2.4700
O1···H7ii 2.6900 H3···C11 2.7600
N2···C15iv 3.3835 (19) H3···C15 2.9900
N1···H11i 2.8400 H3···H4 2.5000
N1···H10Bi 2.9000 H4···H3 2.5000
N2···H3 2.4700 H4···H16A 2.3400
C1···C6ii 3.507 (2) H7···O1ii 2.6900
C1···C7ii 3.550 (2) H10A···Cl1 2.8500
C2···O1 3.3690 (18) H10A···O1 2.3500
C2···C7ii 3.498 (2) H10A···O1iv 2.8600
C3···C11 3.295 (2) H10B···Cl1 2.9100
C3···C15 3.445 (2) H10B···H11 2.3800
C3···Cl1i 3.5414 (15) H10B···N1i 2.9000
C5···Cl1ii 3.6161 (18) H10B···C8i 2.9900
C6···C1ii 3.507 (2) H11···H10B 2.3800
C7···C2ii 3.498 (2) H11···N1i 2.8400
C7···O1ii 3.348 (2) H12···C5vii 2.8400
C7···C1ii 3.550 (2) H12···C16vii 3.0100
C8···C8ii 3.473 (2) H12···H16Cvii 2.5800
C9···Cl1i 3.6496 (15) H13···O1v 2.3700
C10···C15iv 3.592 (2) H14···C6ix 3.0600
C11···C3 3.295 (2) H14···C7ix 2.9900
C13···O1v 3.299 (2) H16A···H4 2.3400
C14···C16vi 3.526 (3) H16B···C14vi 2.8600
C15···N2iv 3.3835 (19) H16B···Cl1ii 3.0700
C15···C3 3.445 (2) H16C···H12vii 2.5800
C1—N1—C8 116.78 (13) O1—C15—C14 125.67 (15)
C10—N2—C11 119.73 (12) N2—C15—C14 114.41 (15)
C10—N2—C15 117.73 (13) C2—C3—H3 119.00
C11—N2—C15 122.42 (13) C9—C3—H3 119.00
Cl1—C1—N1 115.89 (11) C5—C4—H4 119.00
Cl1—C1—C2 117.30 (11) C9—C4—H4 119.00
N1—C1—C2 126.81 (14) C5—C6—H6 119.00
C1—C2—C3 115.58 (13) C7—C6—H6 119.00
C1—C2—C10 121.03 (13) C6—C7—H7 120.00
C3—C2—C10 123.39 (13) C8—C7—H7 120.00
C2—C3—C9 121.28 (14) N2—C10—H10A 109.00
C5—C4—C9 121.27 (15) N2—C10—H10B 109.00
C4—C5—C6 118.03 (16) C2—C10—H10A 109.00
C4—C5—C16 121.28 (16) C2—C10—H10B 109.00
C6—C5—C16 120.68 (16) H10A—C10—H10B 108.00
C5—C6—C7 122.49 (16) N2—C11—H11 119.00
C6—C7—C8 120.10 (15) C12—C11—H11 119.00
N1—C8—C7 119.42 (14) C11—C12—H12 121.00
N1—C8—C9 122.15 (13) C13—C12—H12 121.00
C7—C8—C9 118.43 (14) C12—C13—H13 120.00
C3—C9—C4 122.97 (14) C14—C13—H13 120.00
C3—C9—C8 117.37 (13) C13—C14—H14 119.00
C4—C9—C8 119.65 (14) C15—C14—H14 119.00
N2—C10—C2 112.30 (12) C5—C16—H16A 109.00
N2—C11—C12 121.55 (16) C5—C16—H16B 109.00
C11—C12—C13 118.81 (17) C5—C16—H16C 109.00
C12—C13—C14 120.18 (17) H16A—C16—H16B 109.00
C13—C14—C15 122.51 (16) H16A—C16—H16C 109.00
O1—C15—N2 119.91 (14) H16B—C16—H16C 109.00
C8—N1—C1—Cl1 −179.03 (11) C2—C3—C9—C4 −179.11 (15)
C8—N1—C1—C2 0.2 (2) C2—C3—C9—C8 0.1 (2)
C1—N1—C8—C7 −179.03 (14) C9—C4—C5—C6 0.5 (2)
C1—N1—C8—C9 1.3 (2) C9—C4—C5—C16 179.90 (16)
C11—N2—C10—C2 −85.11 (17) C5—C4—C9—C3 −179.74 (15)
C15—N2—C10—C2 91.08 (15) C5—C4—C9—C8 1.0 (2)
C10—N2—C11—C12 177.19 (16) C4—C5—C6—C7 −1.1 (3)
C15—N2—C11—C12 1.2 (2) C16—C5—C6—C7 179.45 (17)
C10—N2—C15—O1 0.1 (2) C5—C6—C7—C8 0.2 (3)
C10—N2—C15—C14 −179.61 (13) C6—C7—C8—N1 −178.43 (15)
C11—N2—C15—O1 176.14 (14) C6—C7—C8—C9 1.3 (2)
C11—N2—C15—C14 −3.5 (2) N1—C8—C9—C3 −1.5 (2)
Cl1—C1—C2—C3 177.80 (11) N1—C8—C9—C4 177.83 (14)
Cl1—C1—C2—C10 −1.85 (19) C7—C8—C9—C3 178.85 (14)
N1—C1—C2—C3 −1.4 (2) C7—C8—C9—C4 −1.9 (2)
N1—C1—C2—C10 178.91 (14) N2—C11—C12—C13 1.2 (3)
C1—C2—C3—C9 1.2 (2) C11—C12—C13—C14 −0.9 (3)
C10—C2—C3—C9 −179.19 (14) C12—C13—C14—C15 −1.7 (3)
C1—C2—C10—N2 −176.75 (13) C13—C14—C15—O1 −175.85 (16)
C3—C2—C10—N2 3.6 (2) C13—C14—C15—N2 3.8 (2)

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+3/2, −y+1/2, −z; (iii) −x+3/2, y−1/2, −z+1/2; (iv) −x+2, y, −z+1/2; (v) −x+3/2, y+1/2, −z+1/2; (vi) −x+1, −y+1, −z; (vii) −x+3/2, −y+3/2, −z; (viii) x, −y+1, z−1/2; (ix) x, −y+1, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C13—H13···O1v 0.93 2.37 3.299 (2) 173

Symmetry codes: (v) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2533).

References

  1. Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o3187. [DOI] [PMC free article] [PubMed]
  2. Clegg, W. & Nichol, G. S. (2004). Acta Cryst. E60, o1433–o1436.
  3. Conreaux, D., Bossharth, E., Monteiro, N., Desbordes, P. & Balme, G. (2005). Tetrahedron Lett.46, 7917–7920.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Nichol, G. S. & Clegg, W. (2005). Acta Cryst. C61, o383–o385. [DOI] [PubMed]
  7. Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED Oxford Diffraction Ltd, Yarnton, England.
  8. Roopan, S. M. & Khan, F. N. (2009). ARKIVOC, pp. 161–169.
  9. Roopan, S. M., Khan, F. N. & Mandal, B. K. (2010). Tetrahedron Lett.51, 2309–2311.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810011177/is2533sup1.cif

e-66-0o960-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011177/is2533Isup2.hkl

e-66-0o960-Isup2.hkl (123.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES