Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 13;66(Pt 4):o803–o804. doi: 10.1107/S1600536810008718

2′-Methyl-3,5-diphenyl­spiro­[4,6-dioxa-2-aza­bicyclo­[3.2.0]hept-2-ene-7,4′-iso­quinoline]-1′,3′(2′H,4′H)-dione

Hoong-Kun Fun a,*,, Jia Hao Goh a,§, Haitao Yu b, Yan Zhang b
PMCID: PMC2984019  PMID: 21580639

Abstract

In the title compound, C25H18N2O4, the tetra­hydro­pyridine ring adopts a distorted envelope conformation with the spiro C atom at the flap position [deviation = 0.470 (2) Å]. The dihydro–oxazole ring is planar (r.m.s. deviation = 0.013 Å) and it makes dihedral angles of 73.43 (8) and 4.24 (8)° with the two attached phenyl rings. The dihedral angle between oxetane and oxazole planes is 67.44 (9)°. In the crystal structure, C—H⋯O hydrogen bonds link neighbouring mol­ecules into zigzag chains along the b axis and these chains are linked via C—H⋯π inter­actions.

Related literature

For general background to and applications of isoquinolinedione derivatives, see: Hall et al. (1994); Malamas & Hohman (1994); Nan et al. (2004). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Fun et al. (2010); Wang et al. (2000). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-0o803-scheme1.jpg

Experimental

Crystal data

  • C25H18N2O4

  • M r = 410.41

  • Monoclinic, Inline graphic

  • a = 13.3142 (3) Å

  • b = 8.0366 (2) Å

  • c = 19.1913 (5) Å

  • β = 109.882 (1)°

  • V = 1931.09 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.79 mm−1

  • T = 100 K

  • 0.27 × 0.26 × 0.25 mm

Data collection

  • Bruker SMART APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.815, T max = 0.830

  • 32042 measured reflections

  • 3254 independent reflections

  • 3227 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.150

  • S = 1.35

  • 3254 reflections

  • 353 parameters

  • All H-atom parameters refined

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.88 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008718/ci5051sup1.cif

e-66-0o803-sup1.cif (24.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008718/ci5051Isup2.hkl

e-66-0o803-Isup2.hkl (159.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C13–C18 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O1i 0.97 (2) 2.51 (2) 3.213 (2) 129 (1)
C23—H23ACg1ii 0.96 (2) 2.66 (2) 3.5904 (18) 166 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). Financial support from the Ministry of Science and Technology of China of the Austria–China Cooperation project (grant No. 2007DFA41590) is acknowledged. JHG also thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

1,3,4(2H)-Isoquinolinetrione derivatives have a variety of biological activities and are synthetic precursors for many naturally occuring alkaloids. On the other hand, the N-analogues of homophthalic anhydride, 1,3-isoquinolinedione and its derivatives, have a wide range of biological activities and their structural modifications with the aim of finding new drugs and medicine have drawn increasing research interests (Malamas & Hohman, 1994; Hall et al., 1994). Some substituted 1,3,4(2H)-isoquinolinetrione and their derivatives have been reported to treat neurodegenerative diseases, especially as the medicine for Alzhermer's disease, apoplexy and brain ischernic injuries (Nan et al., 2004). The crystal structure of Z-2-methyl-3'-phenyl-spiro[isoquinoline-4,2'-oxirane]-1,3-dione has been reported (Wang et al., 2000). In view of the importance of the title compound as a caspase inhibitor, this paper reports its crystal structure.

In the title isoquinoline-1,3-dione derivative (Fig. 1), the dihydro-oxazole ring (C10/C11/O4/C12/N2) is essentially planar, with a maximum deviation of 0.019 (1) Å at atom O4. The oxazole ring makes dihedral angles of 73.43 (8) and 4.24 (8)°, respectively, with C13–C18 and C19–C24 benzene rings attached to it. The tetrahydropyridine ring of the tetrahydroisoquinoline ring system adopts a distorted envelope conformation with spiro carbon C9 as the flap; the puckering amplitude Q = 0.352 (2) Å; θ = 108.2 (3)° and φ = 287.0 (3)° (Cremer & Pople, 1975). The oxetane plane (C9-C11/O3) is inclined at a dihedral angle of 67.44 (9)° with the oxazole ring. Bond lengths (Allen et al., 1987) and angles are normal and comparable to those observed in related isoquinoline-1,3-dione structures (Fun et al., 2010; Wang et al., 2000).

In the crystal structure (Fig. 2), intermolecular C17—H17A···O1 hydrogen bonds (Table 1) link the molecules into zigzag chains along the b axis. The adjacent chains are cross-linked by intermolecular C—H···π interactions (Table 1) involving the C13-C18 benzene ring (centroid Cg1).

Experimental

The title compound was obtained from the reaction between 1,3,4(2H)-isoquinolinetrione (189 mg, 1 mmol) and 2,5-diphenyloxazole (440 mg, 2 mmol). The compound was purified by flash column chromatography in ethyl acetate and petroleum ether. X-ray quality single crystals of the title compound were obtained by slow evaporation of a chloroform solution.

Refinement

All the H atoms were located in a difference Fourier map [C–H = 0.95 (2)–1.021 (18) Å] and allowed to refine freely. The highest residual electron density peak is located at 0.75 Å from H10A and the deepest hole is located at 0.86 Å from C18.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the c axis, showing a hydrogen-bonded (dashed lines) chain along the b axis. H atoms not involved in the interactions have been omitted for clarity.

Crystal data

C25H18N2O4 F(000) = 856
Mr = 410.41 Dx = 1.412 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 9894 reflections
a = 13.3142 (3) Å θ = 3.5–64.6°
b = 8.0366 (2) Å µ = 0.79 mm1
c = 19.1913 (5) Å T = 100 K
β = 109.882 (1)° Block, colourless
V = 1931.09 (8) Å3 0.27 × 0.26 × 0.25 mm
Z = 4

Data collection

Bruker SMART APEX DUO CCD area-detector diffractometer 3254 independent reflections
Radiation source: fine-focus sealed tube 3227 reflections with I > 2σ(I)
none Rint = 0.018
φ and ω scans θmax = 65.0°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −15→15
Tmin = 0.815, Tmax = 0.830 k = −9→8
32042 measured reflections l = −22→22

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 All H-atom parameters refined
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0926P)2 + 0.3391P] where P = (Fo2 + 2Fc2)/3
S = 1.35 (Δ/σ)max = 0.001
3254 reflections Δρmax = 0.80 e Å3
353 parameters Δρmin = −0.88 e Å3
0 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.052 (3)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.67405 (9) 0.09357 (15) 0.23596 (6) 0.0292 (3)
O2 0.98657 (9) 0.36419 (16) 0.27093 (6) 0.0317 (3)
O3 0.62301 (8) 0.07638 (12) 0.08429 (5) 0.0200 (3)
O4 0.65067 (8) −0.12787 (13) 0.00309 (5) 0.0197 (3)
N1 0.83241 (10) 0.22292 (16) 0.25592 (7) 0.0219 (3)
N2 0.82562 (9) −0.07527 (14) 0.06914 (6) 0.0185 (3)
C1 0.73931 (12) 0.14769 (18) 0.21089 (8) 0.0210 (4)
C2 0.90196 (12) 0.31220 (19) 0.22920 (8) 0.0225 (4)
C3 0.86313 (11) 0.34634 (18) 0.14836 (8) 0.0206 (4)
C4 0.91327 (12) 0.4707 (2) 0.12193 (9) 0.0253 (4)
C5 0.87765 (13) 0.5082 (2) 0.04699 (9) 0.0265 (4)
C6 0.79084 (13) 0.42300 (19) −0.00134 (9) 0.0244 (4)
C7 0.74074 (12) 0.29813 (19) 0.02473 (8) 0.0216 (4)
C8 0.77731 (11) 0.25907 (18) 0.09976 (8) 0.0187 (4)
C9 0.73081 (11) 0.11985 (18) 0.13037 (8) 0.0190 (4)
C10 0.76955 (11) −0.06240 (18) 0.12152 (8) 0.0182 (4)
C11 0.65008 (12) −0.09381 (18) 0.07673 (8) 0.0193 (4)
C12 0.75508 (11) −0.10798 (17) 0.00665 (8) 0.0182 (4)
C13 0.58169 (11) −0.21713 (18) 0.09854 (8) 0.0194 (4)
C14 0.59034 (13) −0.3863 (2) 0.08529 (9) 0.0247 (4)
C15 0.53327 (13) −0.5023 (2) 0.11064 (9) 0.0278 (4)
C16 0.46778 (12) −0.4499 (2) 0.14951 (9) 0.0263 (4)
C17 0.45793 (12) −0.2815 (2) 0.16149 (8) 0.0246 (4)
C18 0.51465 (11) −0.1653 (2) 0.13609 (8) 0.0219 (4)
C19 0.77737 (12) −0.12908 (17) −0.06280 (8) 0.0192 (4)
C20 0.88379 (12) −0.12115 (18) −0.05944 (9) 0.0215 (4)
C21 0.90942 (13) −0.13662 (19) −0.12331 (9) 0.0259 (4)
C22 0.82889 (14) −0.1618 (2) −0.19087 (9) 0.0286 (4)
C23 0.72301 (13) −0.1716 (2) −0.19467 (9) 0.0284 (4)
C24 0.69684 (12) −0.15463 (18) −0.13063 (8) 0.0229 (4)
C25 0.85260 (14) 0.2178 (2) 0.33612 (8) 0.0267 (4)
H4A 0.9730 (17) 0.530 (3) 0.1601 (11) 0.038 (5)*
H5A 0.9128 (16) 0.594 (3) 0.0298 (11) 0.030 (5)*
H6A 0.7619 (14) 0.453 (2) −0.0564 (10) 0.023 (4)*
H7A 0.6790 (15) 0.241 (2) −0.0100 (10) 0.027 (4)*
H10A 0.8042 (13) −0.122 (2) 0.1680 (10) 0.017 (4)*
H14A 0.6366 (16) −0.421 (3) 0.0580 (11) 0.036 (5)*
H15A 0.5374 (16) −0.622 (3) 0.0998 (11) 0.036 (5)*
H16A 0.4261 (15) −0.531 (3) 0.1681 (10) 0.030 (5)*
H17A 0.4124 (15) −0.243 (2) 0.1881 (10) 0.025 (4)*
H18A 0.5091 (14) −0.049 (3) 0.1448 (10) 0.025 (4)*
H20A 0.9383 (15) −0.105 (2) −0.0121 (10) 0.022 (4)*
H21A 0.9834 (15) −0.124 (2) −0.1203 (9) 0.023 (4)*
H22A 0.8479 (17) −0.174 (3) −0.2372 (12) 0.042 (6)*
H23A 0.6682 (16) −0.191 (3) −0.2414 (11) 0.031 (5)*
H24A 0.6219 (16) −0.159 (2) −0.1330 (10) 0.029 (5)*
H25A 0.7977 (15) 0.286 (2) 0.3470 (10) 0.027 (4)*
H25B 0.8482 (14) 0.103 (3) 0.3493 (10) 0.028 (5)*
H25C 0.9243 (16) 0.267 (2) 0.3603 (11) 0.030 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0334 (7) 0.0323 (7) 0.0290 (6) −0.0065 (5) 0.0198 (5) −0.0034 (5)
O2 0.0214 (6) 0.0460 (8) 0.0256 (6) −0.0050 (5) 0.0051 (5) −0.0069 (5)
O3 0.0174 (6) 0.0182 (6) 0.0238 (6) −0.0004 (4) 0.0060 (4) −0.0003 (4)
O4 0.0182 (6) 0.0235 (6) 0.0182 (5) −0.0023 (4) 0.0074 (4) −0.0009 (4)
N1 0.0231 (7) 0.0252 (7) 0.0186 (6) 0.0023 (5) 0.0085 (5) −0.0009 (5)
N2 0.0191 (6) 0.0170 (6) 0.0201 (6) 0.0012 (4) 0.0076 (5) 0.0001 (5)
C1 0.0239 (8) 0.0185 (8) 0.0226 (8) 0.0023 (6) 0.0107 (6) 0.0005 (6)
C2 0.0205 (8) 0.0240 (8) 0.0237 (8) 0.0023 (6) 0.0085 (6) −0.0035 (6)
C3 0.0201 (7) 0.0204 (8) 0.0232 (8) 0.0018 (6) 0.0099 (6) −0.0028 (6)
C4 0.0229 (8) 0.0223 (8) 0.0323 (9) −0.0032 (6) 0.0117 (7) −0.0030 (6)
C5 0.0290 (8) 0.0207 (8) 0.0346 (9) 0.0006 (6) 0.0172 (7) 0.0047 (6)
C6 0.0285 (8) 0.0227 (8) 0.0255 (8) 0.0051 (6) 0.0138 (7) 0.0038 (6)
C7 0.0225 (8) 0.0209 (8) 0.0226 (8) 0.0016 (6) 0.0092 (6) −0.0012 (6)
C8 0.0185 (7) 0.0172 (7) 0.0219 (7) 0.0021 (5) 0.0090 (6) −0.0008 (5)
C9 0.0178 (7) 0.0192 (7) 0.0209 (7) 0.0002 (5) 0.0077 (6) −0.0009 (5)
C10 0.0191 (7) 0.0181 (7) 0.0182 (7) −0.0002 (5) 0.0073 (6) 0.0006 (5)
C11 0.0207 (8) 0.0192 (7) 0.0184 (7) 0.0012 (6) 0.0074 (6) 0.0003 (5)
C12 0.0179 (7) 0.0145 (7) 0.0228 (8) 0.0002 (5) 0.0076 (6) 0.0011 (5)
C13 0.0165 (7) 0.0216 (8) 0.0188 (7) −0.0017 (6) 0.0045 (6) 0.0008 (6)
C14 0.0260 (8) 0.0246 (8) 0.0265 (8) −0.0016 (6) 0.0130 (7) −0.0026 (6)
C15 0.0311 (9) 0.0211 (8) 0.0321 (9) −0.0044 (6) 0.0116 (7) −0.0007 (6)
C16 0.0237 (8) 0.0283 (9) 0.0270 (8) −0.0067 (6) 0.0085 (6) 0.0033 (6)
C17 0.0187 (7) 0.0312 (9) 0.0253 (8) −0.0020 (6) 0.0095 (6) 0.0011 (6)
C18 0.0188 (7) 0.0226 (8) 0.0242 (8) 0.0005 (6) 0.0071 (6) 0.0006 (6)
C19 0.0231 (8) 0.0137 (7) 0.0217 (8) −0.0001 (5) 0.0089 (6) 0.0002 (5)
C20 0.0222 (8) 0.0196 (8) 0.0229 (8) −0.0010 (6) 0.0078 (6) 0.0002 (6)
C21 0.0269 (9) 0.0239 (8) 0.0316 (9) −0.0013 (6) 0.0158 (7) −0.0024 (6)
C22 0.0371 (9) 0.0284 (9) 0.0253 (8) −0.0032 (7) 0.0172 (7) −0.0053 (6)
C23 0.0310 (9) 0.0319 (9) 0.0213 (8) −0.0032 (7) 0.0074 (7) −0.0059 (6)
C24 0.0226 (8) 0.0216 (8) 0.0246 (8) −0.0006 (6) 0.0081 (6) −0.0018 (6)
C25 0.0304 (9) 0.0319 (10) 0.0190 (8) 0.0065 (7) 0.0100 (7) −0.0008 (6)

Geometric parameters (Å, °)

O1—C1 1.2083 (18) C11—C13 1.499 (2)
O2—C2 1.2130 (19) C12—C19 1.470 (2)
O3—C11 1.4343 (17) C13—C18 1.388 (2)
O3—C9 1.4495 (17) C13—C14 1.395 (2)
O4—C12 1.3777 (17) C14—C15 1.391 (2)
O4—C11 1.4421 (16) C14—H14A 0.98 (2)
N1—C1 1.386 (2) C15—C16 1.392 (2)
N1—C2 1.399 (2) C15—H15A 0.99 (2)
N1—C25 1.4702 (18) C16—C17 1.386 (2)
N2—C12 1.2741 (19) C16—H16A 1.00 (2)
N2—C10 1.4453 (18) C17—C18 1.389 (2)
C1—C9 1.5269 (19) C17—H17A 0.966 (18)
C2—C3 1.485 (2) C18—H18A 0.96 (2)
C3—C4 1.390 (2) C19—C24 1.392 (2)
C3—C8 1.394 (2) C19—C20 1.398 (2)
C4—C5 1.386 (2) C20—C21 1.385 (2)
C4—H4A 1.00 (2) C20—H20A 0.960 (19)
C5—C6 1.391 (2) C21—C22 1.388 (2)
C5—H5A 0.95 (2) C21—H21A 0.972 (19)
C6—C7 1.389 (2) C22—C23 1.389 (2)
C6—H6A 1.021 (18) C22—H22A 1.01 (2)
C7—C8 1.390 (2) C23—C24 1.393 (2)
C7—H7A 0.979 (19) C23—H23A 0.96 (2)
C8—C9 1.4925 (19) C24—H24A 0.98 (2)
C9—C10 1.5810 (19) C25—H25A 0.99 (2)
C10—C11 1.550 (2) C25—H25B 0.97 (2)
C10—H10A 0.979 (17) C25—H25C 0.99 (2)
C11—O3—C9 93.49 (10) C13—C11—C10 124.00 (12)
C12—O4—C11 105.73 (10) N2—C12—O4 118.61 (12)
C1—N1—C2 123.94 (12) N2—C12—C19 124.45 (13)
C1—N1—C25 116.55 (12) O4—C12—C19 116.93 (12)
C2—N1—C25 119.32 (12) C18—C13—C14 119.65 (14)
C12—N2—C10 106.25 (12) C18—C13—C11 120.36 (13)
O1—C1—N1 121.37 (14) C14—C13—C11 119.86 (13)
O1—C1—C9 122.31 (14) C15—C14—C13 120.04 (14)
N1—C1—C9 115.96 (12) C15—C14—H14A 120.9 (12)
O2—C2—N1 121.09 (14) C13—C14—H14A 119.0 (12)
O2—C2—C3 122.78 (14) C14—C15—C16 120.06 (15)
N1—C2—C3 116.04 (13) C14—C15—H15A 120.1 (12)
C4—C3—C8 120.25 (14) C16—C15—H15A 119.8 (12)
C4—C3—C2 118.33 (14) C17—C16—C15 119.76 (14)
C8—C3—C2 121.42 (13) C17—C16—H16A 119.0 (11)
C5—C4—C3 119.85 (14) C15—C16—H16A 121.2 (11)
C5—C4—H4A 124.3 (12) C16—C17—C18 120.30 (14)
C3—C4—H4A 115.8 (12) C16—C17—H17A 120.8 (11)
C4—C5—C6 119.90 (14) C18—C17—H17A 118.9 (11)
C4—C5—H5A 118.7 (12) C13—C18—C17 120.17 (14)
C6—C5—H5A 121.4 (12) C13—C18—H18A 119.1 (11)
C7—C6—C5 120.48 (14) C17—C18—H18A 120.8 (11)
C7—C6—H6A 118.8 (10) C24—C19—C20 119.76 (14)
C5—C6—H6A 120.7 (10) C24—C19—C12 122.41 (13)
C6—C7—C8 119.63 (14) C20—C19—C12 117.82 (13)
C6—C7—H7A 119.3 (11) C21—C20—C19 120.39 (15)
C8—C7—H7A 121.1 (11) C21—C20—H20A 121.0 (11)
C7—C8—C3 119.88 (13) C19—C20—H20A 118.6 (11)
C7—C8—C9 122.08 (13) C20—C21—C22 119.69 (15)
C3—C8—C9 117.98 (13) C20—C21—H21A 119.2 (10)
O3—C9—C8 113.43 (11) C22—C21—H21A 121.0 (10)
O3—C9—C1 111.72 (11) C21—C22—C23 120.34 (15)
C8—C9—C1 112.99 (12) C21—C22—H22A 119.5 (12)
O3—C9—C10 90.15 (10) C23—C22—H22A 120.2 (12)
C8—C9—C10 117.26 (11) C22—C23—C24 120.14 (15)
C1—C9—C10 109.26 (11) C22—C23—H23A 119.7 (11)
N2—C10—C11 106.14 (11) C24—C23—H23A 120.2 (11)
N2—C10—C9 113.93 (11) C19—C24—C23 119.68 (14)
C11—C10—C9 84.25 (10) C19—C24—H24A 119.7 (11)
N2—C10—H10A 113.8 (10) C23—C24—H24A 120.6 (11)
C11—C10—H10A 120.1 (10) N1—C25—H25A 108.7 (11)
C9—C10—H10A 115.3 (10) N1—C25—H25B 107.2 (11)
O3—C11—O4 111.43 (11) H25A—C25—H25B 110.9 (15)
O3—C11—C13 113.89 (12) N1—C25—H25C 106.5 (11)
O4—C11—C13 110.76 (11) H25A—C25—H25C 110.3 (15)
O3—C11—C10 91.97 (10) H25B—C25—H25C 113.0 (16)
O4—C11—C10 103.17 (11)
C2—N1—C1—O1 −168.82 (14) C8—C9—C10—C11 −119.42 (13)
C25—N1—C1—O1 6.1 (2) C1—C9—C10—C11 110.37 (12)
C2—N1—C1—C9 18.0 (2) C9—O3—C11—O4 −108.01 (12)
C25—N1—C1—C9 −167.07 (13) C9—O3—C11—C13 125.81 (12)
C1—N1—C2—O2 −174.06 (14) C9—O3—C11—C10 −3.03 (10)
C25—N1—C2—O2 11.1 (2) C12—O4—C11—O3 94.44 (12)
C1—N1—C2—C3 9.2 (2) C12—O4—C11—C13 −137.68 (12)
C25—N1—C2—C3 −165.64 (13) C12—O4—C11—C10 −3.02 (14)
O2—C2—C3—C4 −14.3 (2) N2—C10—C11—O3 −110.49 (11)
N1—C2—C3—C4 162.41 (13) C9—C10—C11—O3 2.79 (9)
O2—C2—C3—C8 166.92 (14) N2—C10—C11—O4 2.06 (14)
N1—C2—C3—C8 −16.4 (2) C9—C10—C11—O4 115.34 (11)
C8—C3—C4—C5 0.1 (2) N2—C10—C11—C13 128.72 (14)
C2—C3—C4—C5 −178.67 (13) C9—C10—C11—C13 −118.01 (14)
C3—C4—C5—C6 1.0 (2) C10—N2—C12—O4 −2.00 (16)
C4—C5—C6—C7 −1.3 (2) C10—N2—C12—C19 179.06 (13)
C5—C6—C7—C8 0.5 (2) C11—O4—C12—N2 3.43 (17)
C6—C7—C8—C3 0.6 (2) C11—O4—C12—C19 −177.55 (11)
C6—C7—C8—C9 −176.45 (13) O3—C11—C13—C18 −12.07 (19)
C4—C3—C8—C7 −0.9 (2) O4—C11—C13—C18 −138.61 (13)
C2—C3—C8—C7 177.82 (13) C10—C11—C13—C18 98.05 (17)
C4—C3—C8—C9 176.28 (13) O3—C11—C13—C14 172.03 (13)
C2—C3—C8—C9 −5.0 (2) O4—C11—C13—C14 45.49 (17)
C11—O3—C9—C8 122.99 (12) C10—C11—C13—C14 −77.85 (19)
C11—O3—C9—C1 −107.89 (12) C18—C13—C14—C15 −1.0 (2)
C11—O3—C9—C10 2.97 (10) C11—C13—C14—C15 174.94 (13)
C7—C8—C9—O3 −23.27 (19) C13—C14—C15—C16 −0.3 (2)
C3—C8—C9—O3 159.58 (12) C14—C15—C16—C17 1.4 (2)
C7—C8—C9—C1 −151.74 (13) C15—C16—C17—C18 −1.2 (2)
C3—C8—C9—C1 31.12 (17) C14—C13—C18—C17 1.1 (2)
C7—C8—C9—C10 79.82 (17) C11—C13—C18—C17 −174.77 (12)
C3—C8—C9—C10 −97.33 (15) C16—C17—C18—C13 0.0 (2)
O1—C1—C9—O3 19.88 (19) N2—C12—C19—C24 −175.95 (14)
N1—C1—C9—O3 −166.99 (12) O4—C12—C19—C24 5.1 (2)
O1—C1—C9—C8 149.23 (14) N2—C12—C19—C20 3.4 (2)
N1—C1—C9—C8 −37.65 (17) O4—C12—C19—C20 −175.55 (12)
O1—C1—C9—C10 −78.29 (17) C24—C19—C20—C21 0.8 (2)
N1—C1—C9—C10 94.83 (14) C12—C19—C20—C21 −178.63 (13)
C12—N2—C10—C11 −0.22 (14) C19—C20—C21—C22 −0.7 (2)
C12—N2—C10—C9 −91.04 (14) C20—C21—C22—C23 0.0 (2)
O3—C9—C10—N2 102.37 (12) C21—C22—C23—C24 0.6 (2)
C8—C9—C10—N2 −14.29 (18) C20—C19—C24—C23 −0.2 (2)
C1—C9—C10—N2 −144.50 (12) C12—C19—C24—C23 179.18 (14)
O3—C9—C10—C11 −2.76 (9) C22—C23—C24—C19 −0.5 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 benzene ring.
D—H···A D—H H···A D···A D—H···A
C17—H17A···O1i 0.97 (2) 2.51 (2) 3.213 (2) 129 (1)
C23—H23A···Cg1ii 0.96 (2) 2.66 (2) 3.5904 (18) 166 (2)

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y−3/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5051).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  5. Fun, H.-K., Goh, J. H., Yu, H. & Zhang, Y. (2010). Acta Cryst. E66, o724–o725. [DOI] [PMC free article] [PubMed]
  6. Hall, I. H., Chapman, J. M. & Wong, O. T. (1994). Anticancer Drugs, 5, 75–82. [DOI] [PubMed]
  7. Malamas, M. S. & Hohman, T. C. (1994). J. Med. Chem.37, 2043–2058. [DOI] [PubMed]
  8. Nan, F. J., Li, J., Chen, Y. H., Zhang, Y. H., Gu, M. & Zhang, H. J. (2004). PCT Int. Appl. WO 2004111010 A1.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Wang, X.-L., Tian, J.-Z., Ling, K.-Q. & Xu, J.-H. (2000). Res. Chem. Intermed.26, 679–689.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008718/ci5051sup1.cif

e-66-0o803-sup1.cif (24.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008718/ci5051Isup2.hkl

e-66-0o803-Isup2.hkl (159.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES