Abstract
A twisted conformation is found in the title compound, C8H9ClN2, with the ethanimidamide residue being twisted substantially to the benzene ring [dihedral angle = 66.54 (14)°]. The conformation about the C=N double bond [1.299 (3) Å] is Z. A two-dimensional array with a zigzag topology is formed in the crystal structure via N—H⋯N and N—H⋯Cl hydrogen-bonding interactions.
Related literature
For background to the synthesis of N-(p-chlorophenyl)acetamidine and related N-arylacetamidines used as reagents in the formation of anti-leishmanial compounds, see: Shearer et al. (1997 ▶); Rousselet et al. (1993 ▶); Patai (1975 ▶). For background to leismaniasis, see: Ouellette et al. (2004 ▶); Croft et al. (2006 ▶); Ferreira et al. (2007 ▶); World Health Organization (2010 ▶).
Experimental
Crystal data
C8H9ClN2
M r = 168.62
Orthorhombic,
a = 9.6460 (9) Å
b = 9.0192 (4) Å
c = 19.3281 (5) Å
V = 1681.53 (18) Å3
Z = 8
Mo Kα radiation
μ = 0.39 mm−1
T = 120 K
0.35 × 0.20 × 0.10 mm
Data collection
Nonius KappaCCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2007 ▶) T min = 0.792, T max = 1.000
14006 measured reflections
1924 independent reflections
1185 reflections with I > 2σ(I)
R int = 0.081
Refinement
R[F 2 > 2σ(F 2)] = 0.047
wR(F 2) = 0.150
S = 1.05
1924 reflections
107 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.34 e Å−3
Δρmin = −0.33 e Å−3
Data collection: COLLECT (Hooft, 1998 ▶); cell refinement: DENZO (Otwinowski & Minor, 1997 ▶) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶) and DIAMOND (Brandenburg, 2006 ▶); software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810011013/hg2664sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011013/hg2664Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N2—H1n⋯N1i | 0.88 (3) | 2.08 (3) | 2.965 (3) | 176 (3) |
| N2—H2n⋯Cl1ii | 0.80 (3) | 2.83 (3) | 3.464 (2) | 138 (3) |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).
supplementary crystallographic information
Comment
N-(p-Chlorophenyl)acetamidine and related N-arylacetamidines (Shearer et al. 1997; Rousselet et al. 1993; Patai, 1975) were synthesized for use as reagents in the formation of 5-(difluoromethyl)-2-methyl-1-(substituted-phenyl)-1H-imidazoles, which are active anti-leishmanial compounds (Ferreira et al., 2007). Leishmaniasis is caused by several species of protozoan parasites transmitted by the bite of the female phlebotomine sand fly. This neglected disease is currently prevalent in four continents, being endemic in 88 countries, 72 of which are developing countries, threatening 350 millions worldwide (World Health Organization, 2010). The treatment of Leishmaniasis, currently, is dependent on old and highly toxic drugs (Croft et al., 2006). In addition, the development of clinical resistance and the increase of co-infections leishmaniasis AIDS, in some countries is causing further worries. Thus, the development of new, efficient, and safe drugs for the treatment of this disease is imperative (Ouellette et al., 2004; Croft et al., 2006; Ferreira et al., 2007). This contribution describes the synthesis and crystallographic characterisation of an N-(p-chlorophenyl)acetamidine derivative, (I).
The molecular structure of (I), Fig. 1, is twisted about the C1–N1 bond as seen in the value of the C2–C1–N1–C7 torsion angle of -118.6 (2) °; the dihedral angle formed between the benzene ring and ethanimidamide residue is 66.54 (14) °. The molecule has approximate mirror symmetry with the non-hydrogen atoms of the ethanimidamide lying on the putative plane and the benzene ring being bisected by the plane. The conformation about the C7═ N1 double bond [1.299 (3) Å] is Z.
The crystal packing is dominated by N–H···N and N–H···Cl hydrogen bonding interactions, Table 1. These lead to the formation of 22-membered {···HNH···ClC4NCNH···ClC4N···HNCN}2 synthons that are connected into supramolecular arrays in the ac plane, Fig. 2; these have a zig-zag topology.
Experimental
To a stirred solution of p-chloroaniline (10.75 mmol) in acetonitrile (40 ml) was bubbled hydrogen chloride. A precipitate was formed immediately. The resulting suspension was refluxed and became homogeneous. Upon complete reaction, as shown by TLC, the mixture was rotary evaporated and the residue partitioned between CH2Cl2 and saturated aqueous NaHCO3. The aqueous layer was washed (3 times) with CH2Cl2, and the combined organic layers were dried over sodium sulfate, filtered, and the filtrate concentrated under reduced pressure to yield a white solid; yield 96%, m.p. 389–390 K. The sample used in the X-ray study was slowly grown from an ethanol solution of (I). IR (KBr, cm-1): 3451, 3295, 3079, 1640, 1586, 1482. 1H NMR (500 MHz, CDCl3): δ 1.99 (s, 3H, CH3); 4.53 (br s, 2H, 2); 6.77 (d, 2H, J = 8.0 Hz); 7.24 (d, 2H, J = 8.0 Hz) p.p.m. 13C NMR (125 MHz, CDCl3): δ 21.59 (CH3); 122.5 121.1; 128.6; 144.6; 155.3 (H2N—C=N) p.p.m. EI—MS (m/z): 168 (M+, 68%); 153 (M+-15, 38%); 127 (M+-41, 100%); 111 (M+ -57, 54%); 75 (M+-93, 42%).
Refinement
The C-bound H atoms were geometrically placed (C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C). The positions of the N–H atoms were refined with Uiso(H) = 1.2Ueq(N).
Figures
Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
A view of a supramolecular array in (I) in the ac plane. The N–H···N and N–H···Cl hydrogen bonding interactions are shown as orange dashed lines. Colour code: Cl, cyan; N, blue; C, grey; and H, green.
Crystal data
| C8H9ClN2 | F(000) = 704 |
| Mr = 168.62 | Dx = 1.332 Mg m−3 |
| Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ac 2ab | Cell parameters from 2182 reflections |
| a = 9.6460 (9) Å | θ = 2.9–27.5° |
| b = 9.0192 (4) Å | µ = 0.39 mm−1 |
| c = 19.3281 (5) Å | T = 120 K |
| V = 1681.53 (18) Å3 | Block, colourless |
| Z = 8 | 0.35 × 0.20 × 0.10 mm |
Data collection
| Nonius KappaCCD area-detector diffractometer | 1924 independent reflections |
| Radiation source: Enraf Nonius FR591 rotating anode | 1185 reflections with I > 2σ(I) |
| 10 cm confocal mirrors | Rint = 0.081 |
| Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
| φ and ω scans | h = −11→12 |
| Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −11→9 |
| Tmin = 0.792, Tmax = 1.000 | l = −25→21 |
| 14006 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.150 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.05 | w = 1/[σ2(Fo2) + (0.081P)2] where P = (Fo2 + 2Fc2)/3 |
| 1924 reflections | (Δ/σ)max = 0.001 |
| 107 parameters | Δρmax = 0.34 e Å−3 |
| 0 restraints | Δρmin = −0.33 e Å−3 |
Special details
| Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | 0.43525 (8) | 0.20450 (7) | 0.43084 (3) | 0.0430 (3) | |
| N1 | 0.36389 (19) | 0.4659 (2) | 0.71058 (10) | 0.0308 (5) | |
| N2 | 0.1234 (2) | 0.4244 (2) | 0.70948 (11) | 0.0305 (5) | |
| H1N | 0.044 (3) | 0.438 (3) | 0.7313 (13) | 0.037* | |
| H2N | 0.124 (3) | 0.379 (3) | 0.6740 (14) | 0.037* | |
| C1 | 0.3774 (2) | 0.4032 (3) | 0.64327 (12) | 0.0274 (6) | |
| C2 | 0.4543 (2) | 0.2746 (3) | 0.63454 (14) | 0.0316 (6) | |
| H2 | 0.4938 | 0.2272 | 0.6738 | 0.038* | |
| C3 | 0.4741 (3) | 0.2144 (3) | 0.56933 (13) | 0.0317 (6) | |
| H3 | 0.5266 | 0.1260 | 0.5638 | 0.038* | |
| C4 | 0.4169 (2) | 0.2837 (3) | 0.51261 (13) | 0.0286 (6) | |
| C5 | 0.3428 (3) | 0.4144 (3) | 0.51965 (12) | 0.0342 (6) | |
| H5 | 0.3054 | 0.4627 | 0.4802 | 0.041* | |
| C6 | 0.3243 (3) | 0.4736 (3) | 0.58491 (13) | 0.0348 (6) | |
| H6 | 0.2745 | 0.5638 | 0.5901 | 0.042* | |
| C7 | 0.2408 (2) | 0.4770 (3) | 0.73731 (13) | 0.0269 (6) | |
| C8 | 0.2239 (3) | 0.5538 (3) | 0.80540 (14) | 0.0367 (6) | |
| H8A | 0.3153 | 0.5706 | 0.8261 | 0.055* | |
| H8B | 0.1680 | 0.4919 | 0.8364 | 0.055* | |
| H8C | 0.1774 | 0.6492 | 0.7983 | 0.055* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0537 (5) | 0.0446 (5) | 0.0307 (4) | 0.0051 (3) | 0.0060 (3) | −0.0034 (3) |
| N1 | 0.0210 (11) | 0.0449 (13) | 0.0264 (12) | −0.0010 (9) | −0.0007 (9) | −0.0032 (9) |
| N2 | 0.0205 (11) | 0.0461 (14) | 0.0248 (12) | −0.0033 (9) | 0.0019 (9) | −0.0061 (10) |
| C1 | 0.0171 (11) | 0.0372 (14) | 0.0280 (14) | −0.0036 (10) | −0.0002 (10) | 0.0003 (11) |
| C2 | 0.0286 (13) | 0.0340 (14) | 0.0321 (15) | −0.0010 (11) | −0.0040 (11) | 0.0052 (11) |
| C3 | 0.0297 (13) | 0.0288 (13) | 0.0367 (16) | 0.0031 (10) | 0.0014 (11) | 0.0001 (11) |
| C4 | 0.0284 (13) | 0.0306 (15) | 0.0266 (14) | −0.0016 (10) | 0.0072 (10) | 0.0012 (10) |
| C5 | 0.0327 (14) | 0.0437 (16) | 0.0263 (14) | 0.0074 (11) | 0.0018 (11) | 0.0068 (11) |
| C6 | 0.0296 (14) | 0.0403 (15) | 0.0345 (15) | 0.0119 (11) | 0.0047 (12) | 0.0019 (11) |
| C7 | 0.0233 (12) | 0.0329 (13) | 0.0246 (14) | −0.0026 (10) | −0.0006 (10) | 0.0029 (10) |
| C8 | 0.0281 (13) | 0.0512 (16) | 0.0307 (14) | −0.0059 (12) | 0.0014 (11) | −0.0066 (12) |
Geometric parameters (Å, °)
| Cl1—C4 | 1.743 (3) | C3—C4 | 1.377 (4) |
| N1—C7 | 1.299 (3) | C3—H3 | 0.9500 |
| N1—C1 | 1.425 (3) | C4—C5 | 1.385 (3) |
| N2—C7 | 1.340 (3) | C5—C6 | 1.381 (3) |
| N2—H1N | 0.89 (3) | C5—H5 | 0.9500 |
| N2—H2N | 0.80 (3) | C6—H6 | 0.9500 |
| C1—C2 | 1.387 (3) | C7—C8 | 1.496 (4) |
| C1—C6 | 1.393 (3) | C8—H8A | 0.9800 |
| C2—C3 | 1.386 (4) | C8—H8B | 0.9800 |
| C2—H2 | 0.9500 | C8—H8C | 0.9800 |
| C7—N1—C1 | 118.52 (19) | C6—C5—C4 | 119.1 (2) |
| C7—N2—H1N | 119.4 (17) | C6—C5—H5 | 120.5 |
| C7—N2—H2N | 121 (2) | C4—C5—H5 | 120.5 |
| H1N—N2—H2N | 119 (3) | C5—C6—C1 | 121.0 (2) |
| C2—C1—C6 | 118.7 (2) | C5—C6—H6 | 119.5 |
| C2—C1—N1 | 119.5 (2) | C1—C6—H6 | 119.5 |
| C6—C1—N1 | 121.6 (2) | N1—C7—N2 | 125.8 (2) |
| C3—C2—C1 | 120.8 (2) | N1—C7—C8 | 119.0 (2) |
| C3—C2—H2 | 119.6 | N2—C7—C8 | 115.2 (2) |
| C1—C2—H2 | 119.6 | C7—C8—H8A | 109.5 |
| C4—C3—C2 | 119.4 (2) | C7—C8—H8B | 109.5 |
| C4—C3—H3 | 120.3 | H8A—C8—H8B | 109.5 |
| C2—C3—H3 | 120.3 | C7—C8—H8C | 109.5 |
| C3—C4—C5 | 121.0 (2) | H8A—C8—H8C | 109.5 |
| C3—C4—Cl1 | 119.65 (19) | H8B—C8—H8C | 109.5 |
| C5—C4—Cl1 | 119.4 (2) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—H1n···N1i | 0.88 (3) | 2.08 (3) | 2.965 (3) | 176 (3) |
| N2—H2n···Cl1ii | 0.80 (3) | 2.83 (3) | 3.464 (2) | 138 (3) |
Symmetry codes: (i) x−1/2, y, −z+3/2; (ii) x−1/2, −y+1/2, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2664).
References
- Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Croft, S. L., Sundar, S. & Fairlamb, A. H. (2006). Clin. Microbiol. Rev 19, 111–126. [DOI] [PMC free article] [PubMed]
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Ferreira, S. B., Costa, M. S., Boechat, B., Bezerra, R. J. S., Genestra, M. S., Canto-Cavalheiro, M. M., Kover, W. B. & Ferreira, V. F. (2007). Eur. J. Med. Chem 42, 1388–1395. [DOI] [PubMed]
- Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Ouellette, M., Drummelsmith, J. & Papadopoulou, B. (2004). Drug Resist. Update, 7, 257–266. [DOI] [PubMed]
- Patai, S. (1975). In The Chemistry of Amidines and Imidates New York: Wiley.
- Rousselet, G., Capdevielle, P. & Maumy, M. (1993). Tetrahedron Lett 34, 6395–6398.
- Shearer, B. G., Oplinger, J. A. & Lee, S. (1997). Tetrahedron Lett.38, 179–182.
- Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Westrip, S. P. (2010). publCIF In preparation.
- World Health Organization (2010). http://www.who.int/mediacentre/news/releases/2010/drug_resistant_tb_20100318/en/index.html.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810011013/hg2664sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011013/hg2664Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


