Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 3;66(Pt 4):o726. doi: 10.1107/S1600536810007233

3-(2H-Benzotriazol-2-yl)-2-hydr­oxy-5-methyl­benzaldehyde

Chen-Yu Li a, Chen-Yen Tsai a, Chia-Her Lin a, Bao-Tsan Ko a,*
PMCID: PMC2984053  PMID: 21580573

Abstract

In the title compound, C14H11N3O2, the dihedral angle between the mean planes of the benzotriazole ring system and the benzene ring of the salicylaldehyde group is 2.4 (2)°. There is an intra­molecular O—H⋯N hydrogen bond which may influence the mol­ecular conformation.

Related literature

For the application of N,N,O-tridentate Schiff-base metal complexes in the catalytic ring-opening polymerization of l-lactide, see: Wu et al. (2005); Chen et al. (2006). For a related structure, see: Li et al. (2009).graphic file with name e-66-0o726-scheme1.jpg

Experimental

Crystal data

  • C14H11N3O2

  • M r = 253.26

  • Monoclinic, Inline graphic

  • a = 12.2724 (5) Å

  • b = 14.5018 (5) Å

  • c = 6.8897 (3) Å

  • β = 91.571 (2)°

  • V = 1225.71 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.34 × 0.31 × 0.23 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.972, T max = 0.977

  • 13912 measured reflections

  • 2946 independent reflections

  • 1657 reflections with I > 2σ(I)

  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.146

  • S = 1.01

  • 2946 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810007233/lh5003sup1.cif

e-66-0o726-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007233/lh5003Isup2.hkl

e-66-0o726-Isup2.hkl (144.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.85 1.94 2.588 (2) 132

Acknowledgments

We gratefully acknowledge the financial support in part from the National Science Council, Taiwan (NSC97-2113-M-033-005-MY2) and in part from the project of the specific research fields in Chung Yuan Christian University, Taiwan (No. CYCU-98-CR—CH).

supplementary crystallographic information

Comment

Recently, NNO-tridentate Schiff-base zinc (Zn) and magnesium (Mg) complexes have been attracting considerable attention, mainly due to their applications in the catalytic ring-opening polymerization of L-lactide (Wu et al., 2005; Chen et al., 2006). These NNO-tridentate Schiff-base ligands were easily prepared by condensation from primary amine with the pendant arm of the amino group and various substituted salicylaldehyde derivatives in the presence of MgSO4. The additional amino group can be able to provide strong coordination to stabilize Zn or Mg atom and thereby stabilizes the zinc or magnesium alkoxide complex, without further disproportionation. Most recently, our group has successfully synthesized and structural characterized the amino-phenolate ligand derived from 4-methyl-2-(2H-benzotriazol-2-yl)-phenol (BTP-H) (Li et al., 2009). In order to develop more useful ligands originated from BTP derivates, our group is interested in the preparation of the multidentate Schiff-base ligand containing the benzotriazol group. Herein, we report the synthesis and crystal structure of the title compound, (I), a potential precursor for the preparation of the multidentate Schiff-base BTP ligands.

The molecular structure of (I) reveals the 5-methylsalicylaldehyde configuration with one benzotriazole functionalized group on the C2-position (Fig. 1). The dihedral angle between the planes of the benzotriazole unit and the benzene ring of the salicylaldehyde group is 2.4 (2)°. There is an intramolecular O—H···N hydrogen bond between the phenol and benzotriazole groups (Table 1). The distance of N1···H1A is substantially shorter than the van der Waals distance of 2.75 Å for the N and H distance. The distances in the benzotriazole-phenolate group are similar to those found in the crystal structure of 2-(2H-benzotriazol-2-yl)-6-((diethylamino)methyl)-4-methylphenol (Li et al., 2009).

Experimental

The title compound (I) was synthesized by the following procedures (Fig. 2): In a 100 ml round bottom flask was placed with 4-methyl-2-(2H-benzotriazol-2-yl)phenol (4.50 g, 20.0 mmol) and hexamethylenetetramine (5.60 g, 40 mmol). To this was added trifluoroacetic acid (24 ml, 0.30 mol) and the yellow solution became hot. The resulting mixture was heated to 418 K under reflux for 18 h, during which time the solution colour turned the yellow to dark brown/black. The hot solution was poured into 4 N HCl(aq) (40 ml) and stirred for another 2 h, during which time the solids were formed. The mixture was placed at 253 K overnight and the solids were filtered. The mixture was then extracted with dichloromethane (3 x 150 ml) and the organic layers were dried over MgSO4. The final solution was removed the solvent under vacuum to give yellow solids. Yield: 4.40 g (87 %). Single crystals suitable for X-ray diffraction were obtained from a saturated solution of the title compound in Et2O.

Refinement

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H = 0.93 Å with Uiso(H) = 1.2 Ueq(C) for phenyl hydrogen; 0.96 Å with Uiso(H) = 1.5 Ueq(C) for CH3 group; 0.93 Å with Uiso(H) = 1.2 Ueq(C) for CHO group; O–H = 0.85 Å with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed lines indicates a hydrogen bond.

Fig. 2.

Fig. 2.

The synthetic procedure of the title compound I.

Crystal data

C14H11N3O2 F(000) = 528
Mr = 253.26 Dx = 1.372 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1657 reflections
a = 12.2724 (5) Å θ = 1.7–28.3°
b = 14.5018 (5) Å µ = 0.10 mm1
c = 6.8897 (3) Å T = 296 K
β = 91.571 (2)° Columnar, yellow
V = 1225.71 (8) Å3 0.34 × 0.31 × 0.23 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2946 independent reflections
Radiation source: fine-focus sealed tube 1657 reflections with I > 2σ(I)
graphite Rint = 0.070
Detector resolution: 8.3333 pixels mm-1 θmax = 28.3°, θmin = 1.7°
φ and ω scans h = −16→16
Absorption correction: multi-scan (SADABS; Bruker, 2008) k = −19→19
Tmin = 0.972, Tmax = 0.977 l = −7→9
13912 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.075P)2] where P = (Fo2 + 2Fc2)/3
2946 reflections (Δ/σ)max < 0.001
172 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Experimental. 1H NMR (CDCl3, ppm): δ 11.88 (s, 1H, PhOH),10.51 (s, 1H, PhCHO), 8.36 (s, 1H, PhH), 7.94 (d, 2H, PhH), 7.68 (s, 1H, PhH), 7.50 (d, 2H, PhH), 2.41 (s, 3H, PhCH3).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.50858 (9) 0.36518 (6) 0.26655 (17) 0.0578 (3)
H1A 0.5768 0.3681 0.2490 0.069*
O2 0.18809 (10) 0.37151 (8) 0.3322 (2) 0.0816 (4)
N1 0.68476 (10) 0.27325 (8) 0.20289 (19) 0.0488 (3)
N2 0.62690 (10) 0.19539 (8) 0.22480 (18) 0.0458 (3)
N3 0.68234 (10) 0.11695 (8) 0.21302 (19) 0.0517 (4)
C1 0.45880 (12) 0.28244 (9) 0.2757 (2) 0.0435 (4)
C2 0.51319 (12) 0.19766 (9) 0.2580 (2) 0.0428 (4)
C3 0.45656 (12) 0.11543 (10) 0.2707 (2) 0.0471 (4)
H3B 0.4938 0.0600 0.2579 0.057*
C4 0.34523 (12) 0.11386 (10) 0.3022 (2) 0.0490 (4)
C5 0.29195 (12) 0.19740 (10) 0.3180 (2) 0.0493 (4)
H5A 0.2173 0.1977 0.3381 0.059*
C6 0.34674 (12) 0.28099 (10) 0.3048 (2) 0.0456 (4)
C7 0.78649 (11) 0.24258 (10) 0.1756 (2) 0.0476 (4)
C8 0.88414 (13) 0.29132 (12) 0.1448 (2) 0.0578 (5)
H8A 0.8858 0.3554 0.1408 0.069*
C9 0.97489 (13) 0.24055 (13) 0.1215 (2) 0.0637 (5)
H9A 1.0405 0.2706 0.1011 0.076*
C10 0.97342 (14) 0.14307 (13) 0.1272 (3) 0.0672 (5)
H10A 1.0382 0.1111 0.1099 0.081*
C11 0.88075 (13) 0.09447 (12) 0.1571 (2) 0.0622 (5)
H11A 0.8806 0.0304 0.1608 0.075*
C12 0.78537 (12) 0.14584 (11) 0.1820 (2) 0.0491 (4)
C13 0.28498 (14) 0.02373 (11) 0.3176 (3) 0.0687 (5)
H13A 0.2093 0.0356 0.3392 0.103*
H13B 0.3153 −0.0114 0.4241 0.103*
H13C 0.2919 −0.0105 0.1993 0.103*
C14 0.28544 (14) 0.36772 (11) 0.3179 (2) 0.0578 (5)
H14A 0.3241 0.4228 0.3150 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0533 (6) 0.0414 (6) 0.0792 (9) −0.0065 (5) 0.0092 (5) −0.0014 (5)
O2 0.0565 (8) 0.0613 (8) 0.1276 (13) 0.0086 (6) 0.0154 (7) −0.0057 (7)
N1 0.0475 (7) 0.0449 (7) 0.0540 (9) −0.0062 (6) 0.0031 (6) 0.0029 (6)
N2 0.0458 (7) 0.0421 (7) 0.0495 (9) −0.0022 (5) 0.0021 (6) 0.0019 (5)
N3 0.0477 (7) 0.0449 (7) 0.0629 (10) 0.0010 (6) 0.0044 (6) −0.0005 (6)
C1 0.0505 (9) 0.0395 (7) 0.0405 (9) −0.0044 (6) 0.0012 (7) −0.0002 (6)
C2 0.0433 (8) 0.0437 (8) 0.0414 (9) −0.0004 (6) 0.0013 (6) 0.0014 (6)
C3 0.0482 (9) 0.0399 (8) 0.0532 (10) 0.0018 (6) 0.0012 (7) 0.0019 (6)
C4 0.0491 (9) 0.0438 (8) 0.0542 (11) −0.0018 (6) 0.0017 (7) 0.0028 (7)
C5 0.0444 (8) 0.0508 (9) 0.0530 (10) −0.0006 (6) 0.0046 (7) 0.0009 (7)
C6 0.0484 (9) 0.0435 (8) 0.0448 (10) 0.0002 (6) 0.0018 (7) 0.0000 (6)
C7 0.0466 (9) 0.0543 (9) 0.0420 (9) −0.0041 (7) 0.0025 (7) −0.0001 (7)
C8 0.0539 (10) 0.0615 (10) 0.0583 (12) −0.0110 (8) 0.0053 (8) 0.0019 (8)
C9 0.0510 (10) 0.0747 (12) 0.0657 (13) −0.0113 (9) 0.0071 (8) 0.0008 (9)
C10 0.0478 (9) 0.0776 (12) 0.0766 (14) 0.0042 (9) 0.0070 (8) −0.0052 (9)
C11 0.0516 (10) 0.0583 (10) 0.0771 (13) 0.0046 (8) 0.0076 (8) −0.0044 (8)
C12 0.0463 (9) 0.0514 (9) 0.0497 (10) −0.0021 (7) 0.0021 (7) −0.0006 (7)
C13 0.0560 (10) 0.0495 (10) 0.1008 (15) −0.0060 (8) 0.0074 (9) 0.0064 (9)
C14 0.0567 (10) 0.0478 (9) 0.0693 (12) −0.0005 (7) 0.0078 (8) −0.0033 (7)

Geometric parameters (Å, °)

O1—C1 1.3488 (15) C5—H5A 0.9300
O1—H1A 0.8500 C6—C14 1.470 (2)
O2—C14 1.2026 (18) C7—C12 1.404 (2)
N1—C7 1.3434 (18) C7—C8 1.412 (2)
N1—N2 1.3445 (16) C8—C9 1.348 (2)
N2—N3 1.3292 (16) C8—H8A 0.9300
N2—C2 1.4206 (18) C9—C10 1.414 (3)
N3—C12 1.3545 (18) C9—H9A 0.9300
C1—C6 1.395 (2) C10—C11 1.358 (2)
C1—C2 1.4058 (19) C10—H10A 0.9300
C2—C3 1.3842 (18) C11—C12 1.402 (2)
C3—C4 1.389 (2) C11—H11A 0.9300
C3—H3B 0.9300 C13—H13A 0.9600
C4—C5 1.3823 (19) C13—H13B 0.9600
C4—C13 1.507 (2) C13—H13C 0.9600
C5—C6 1.3905 (19) C14—H14A 0.9300
C1—O1—H1A 120.0 C12—C7—C8 120.93 (14)
C7—N1—N2 103.50 (12) C9—C8—C7 116.85 (16)
N3—N2—N1 116.04 (12) C9—C8—H8A 121.6
N3—N2—C2 122.44 (11) C7—C8—H8A 121.6
N1—N2—C2 121.52 (11) C8—C9—C10 122.10 (15)
N2—N3—C12 103.09 (11) C8—C9—H9A 119.0
O1—C1—C6 118.00 (13) C10—C9—H9A 119.0
O1—C1—C2 123.87 (13) C11—C10—C9 122.29 (16)
C6—C1—C2 118.13 (13) C11—C10—H10A 118.9
C3—C2—C1 120.50 (14) C9—C10—H10A 118.9
C3—C2—N2 119.17 (12) C10—C11—C12 116.62 (16)
C1—C2—N2 120.33 (12) C10—C11—H11A 121.7
C2—C3—C4 121.44 (13) C12—C11—H11A 121.7
C2—C3—H3B 119.3 N3—C12—C11 129.87 (15)
C4—C3—H3B 119.3 N3—C12—C7 108.91 (12)
C5—C4—C3 117.86 (13) C11—C12—C7 121.22 (13)
C5—C4—C13 121.36 (14) C4—C13—H13A 109.5
C3—C4—C13 120.78 (13) C4—C13—H13B 109.5
C4—C5—C6 121.88 (14) H13A—C13—H13B 109.5
C4—C5—H5A 119.1 C4—C13—H13C 109.5
C6—C5—H5A 119.1 H13A—C13—H13C 109.5
C5—C6—C1 120.19 (13) H13B—C13—H13C 109.5
C5—C6—C14 119.52 (14) O2—C14—C6 123.75 (15)
C1—C6—C14 120.28 (13) O2—C14—H14A 118.1
N1—C7—C12 108.46 (12) C6—C14—H14A 118.1
N1—C7—C8 130.62 (15)
C7—N1—N2—N3 −0.35 (17) C2—C1—C6—C5 0.8 (2)
C7—N1—N2—C2 179.82 (12) O1—C1—C6—C14 2.1 (2)
N1—N2—N3—C12 0.42 (17) C2—C1—C6—C14 −178.04 (13)
C2—N2—N3—C12 −179.75 (12) N2—N1—C7—C12 0.12 (15)
O1—C1—C2—C3 179.41 (13) N2—N1—C7—C8 −179.78 (15)
C6—C1—C2—C3 −0.5 (2) N1—C7—C8—C9 −179.89 (14)
O1—C1—C2—N2 −1.3 (2) C12—C7—C8—C9 0.2 (2)
C6—C1—C2—N2 178.88 (12) C7—C8—C9—C10 0.1 (2)
N3—N2—C2—C3 −2.7 (2) C8—C9—C10—C11 −0.2 (3)
N1—N2—C2—C3 177.08 (13) C9—C10—C11—C12 0.1 (2)
N3—N2—C2—C1 177.91 (13) N2—N3—C12—C11 −179.89 (15)
N1—N2—C2—C1 −2.3 (2) N2—N3—C12—C7 −0.30 (16)
C1—C2—C3—C4 −0.4 (3) C10—C11—C12—N3 179.71 (16)
N2—C2—C3—C4 −179.71 (13) C10—C11—C12—C7 0.2 (2)
C2—C3—C4—C5 0.8 (2) N1—C7—C12—N3 0.12 (16)
C2—C3—C4—C13 −179.41 (15) C8—C7—C12—N3 −179.97 (14)
C3—C4—C5—C6 −0.5 (2) N1—C7—C12—C11 179.75 (14)
C13—C4—C5—C6 179.77 (14) C8—C7—C12—C11 −0.3 (2)
C4—C5—C6—C1 −0.4 (3) C5—C6—C14—O2 −3.1 (3)
C4—C5—C6—C14 178.51 (14) C1—C6—C14—O2 175.78 (16)
O1—C1—C6—C5 −179.06 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···N1 0.85 1.94 2.588 (2) 132

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5003).

References

  1. Bruker (2008). APEX2, SADABS and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, H.-Y., Tang, H.-Y. & Lin, C.-C. (2006). Macromolecules, 39, 3745–3752.
  3. Li, J.-Y., Liu, Y.-C., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, o2475. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Wu, J.-C., Huang, B.-H., Hsueh, M.-L., Lai, S.-L. & Lin, C.-C. (2005). Polymer, 46, 9784–9792.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810007233/lh5003sup1.cif

e-66-0o726-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007233/lh5003Isup2.hkl

e-66-0o726-Isup2.hkl (144.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES