Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 27;66(Pt 4):m461. doi: 10.1107/S1600536810010159

Potassium (1-methoxy­carbonyl-2-methyl­prop-2-en-2-yl­idene)azinate

Cédric Reuter a, Jörg M Neudörfl a, Hans-Günther Schmalz a,*
PMCID: PMC2984059  PMID: 21580546

Abstract

In the title compound, K+·C6H8NO4 , the K+ cations have a coordination number of seven and are surrounded by four bidentate azinate anions. The methyl­ene groups of the anions are always directed towards the coordinated potassium cations. The N—C—C—C torsion angle is 101.2 (2)°. The orthogonal non-conjugated nature of the salt confirms the supposed geometry and reactivity of this compound.

Related literature

For a short overview of peptidomimetics, see: Grauer et al. (2009); Vagner et al. (2008); Wu et al. (2008). For the synthesis of peptidomimetics, amino-acid-based building blocks play a key role in the assembly of these structures, see: Kemp, Boyd & Muendel (1991); Kemp, Curran et al. (1991); Beal et al. (2000); Kühne et al. (2008). A known deprotonation/proton­ation sequence (Bouveault & Wahl, 1901) was used in the synthesis of the title compound. The protonation of the title compound occurs exclusively at the α-position and no proton­ation of the methyl­ene group was observed (Baldwin et al., 1977). graphic file with name e-66-0m461-scheme1.jpg

Experimental

Crystal data

  • K+·C6H8NO4

  • M r = 197.23

  • Monoclinic, Inline graphic

  • a = 23.9269 (13) Å

  • b = 5.2909 (2) Å

  • c = 14.2510 (7) Å

  • β = 113.361 (2)°

  • V = 1656.21 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.03 mm

Data collection

  • Nonius KappaCCD diffractometer

  • 6264 measured reflections

  • 1810 independent reflections

  • 1416 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.061

  • S = 1.01

  • 1810 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SCHAKAL99 (Keller, 1999); software used to prepare material for publication: PLATON (Spek, 2009), publCIF (Westrip, 2010) and ORTEP (Davenport et al., 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810010159/jj2024sup1.cif

e-66-0m461-sup1.cif (23KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010159/jj2024Isup2.hkl

e-66-0m461-Isup2.hkl (89.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

K1—O1i 2.7036 (10)
K1—O2ii 2.7539 (11)
K1—O3i 2.7988 (11)
K1—O1 2.7994 (11)
K1—O2 2.8896 (10)
K1—O3iii 2.8970 (12)
K1—O1iii 2.9080 (11)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (FG 806).

supplementary crystallographic information

Comment

In the last decade, interest in peptidomimetics has lead to a fast growing research field within organic chemistry (Grauer et al., 2009). Artificial peptide-like compounds are used to explore the principles of protein-protein interactions and their modulation (Vagner et al., 2008; Wu et al., 2008). In the synthesis of different peptidomimetics, amino acid based building blocks play a key role in the assembly of these structures (Kemp, Curran et al., 1991; Kemp, Boyd & Muendel, 1991; Beal et al., 2000; Kühne et al. 2008). In the context of our work we used an already known deprotonation/protonation sequence (Bouveault et al., 1901) to synthesize our compound. The protonation of the title compound occurs exclusively at the α-position whereas no protonation of the methylene group was observed (Baldwin et al., 1977).

In the title compound, C6H8KNO4, (I),(Fig. 1), the deconjugation within the molecule combined with the high basicity of the nitro enolate provides a convincing explanation for the high selectivity of this reaction (Fig. 2). The crystal structure supports the assumption made by Baldwin et al. about the geometry of this potassium salt. The potassium cations in the crystal stucture have a coordination number of seven and are surrounded by four azinate anions with K—O distances from 2.704 (1) to 2.908 (1) Å (Fig. 3). These can either bind via the carbonyl group or the nitrogen-bonded oxygen atoms whereas both motifs can be found as bridging units. The resulting polar layers of potassium cations surrounded by oxygen atoms are perfectly shielded by the methyl and methylene residues (Fig. 4). This results in loose interactions between the different layers and explains the facile mechanical fissility of the crystals.

Experimental

The title compound, C6H8KNO4, was prepared in good yield from methyl 3-methyl-2-nitrobut-2-enoate by deprotonation with potassium hydride. In a dry, argon-flushed 50 ml flask, 30.1 mmol of potassium hydride where suspended in 15 ml of dry THF. The suspension was cooled to 0 °C and a solution of 30.1 mmol methyl-3-methyl-2-nitrobut-2-enoate in 5 ml of THF was added via syringe over 30 min. After stirring for 5 h at room temperature a small amount of n-octanol was added at 0 °C to destroy the excess of potassium hydride. The paste was filtrated, washed three times with THF and dried in vacuo to give 4.950 g (25.1 mmol, 83%) of an ochre powder. A portion of the salt was recrystallized from MeOH/THF to give colourless prisms.

Refinement

Hydrogen atoms were located in difference Fourier maps and refined at idealized positions (C—H = 0.98 Å for methyl H atoms and 0.95 Å for all other H Atoms) using a riding model. The U values of the hydrogens are constrained relative to Ueq of the parent carbon atom (1.2 x Ueq(C) for C—H2 and 1.5 x Ueq(C) for methyl H).

Figures

Fig. 1.

Fig. 1.

A view of (I). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Protonation of the title compound (I).

Fig. 3.

Fig. 3.

Coordination sphere of an isolated potassium Cation.

Fig. 4.

Fig. 4.

View of the unit cell along the b-axis.

Crystal data

K+·C6H8NO4 F(000) = 816
Mr = 197.23 Dx = 1.582 Mg m3
Monoclinic, Cm2/c Melting point: 180.7(10) K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 23.9269 (13) Å Cell parameters from 6264 reflections
b = 5.2909 (2) Å θ = 1.9–27.0°
c = 14.2510 (7) Å µ = 0.62 mm1
β = 113.361 (2)° T = 100 K
V = 1656.21 (14) Å3 Platlet, colourless
Z = 8 0.20 × 0.15 × 0.03 mm

Data collection

Nonius KappaCCD diffractometer 1416 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.041
graphite θmax = 27.0°, θmin = 1.9°
Phi/ω–Scans scans h = −30→30
6264 measured reflections k = −6→6
1810 independent reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0266P)2] where P = (Fo2 + 2Fc2)/3
1810 reflections (Δ/σ)max = 0.001
111 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
K1 0.269013 (15) −0.06555 (6) 0.11206 (2) 0.01586 (11)
O1 0.22159 (5) 0.42337 (19) 0.06333 (8) 0.0183 (3)
O2 0.20272 (5) 0.26997 (19) 0.19103 (8) 0.0172 (2)
O3 0.15057 (5) 0.81224 (18) −0.04385 (8) 0.0194 (3)
O4 0.07200 (5) 0.87761 (19) 0.00265 (8) 0.0191 (3)
N1 0.19003 (6) 0.4306 (2) 0.11777 (9) 0.0144 (3)
C1 0.14436 (7) 0.5975 (3) 0.10141 (11) 0.0142 (3)
C2 0.12553 (7) 0.7664 (3) 0.01413 (12) 0.0155 (3)
C3 0.04879 (8) 1.0606 (3) −0.07901 (12) 0.0213 (4)
H3A 0.0089 1.1211 −0.0844 0.032*
H3B 0.0446 0.9813 −0.1436 0.032*
H3C 0.0771 1.2034 −0.0644 0.032*
C4 0.11349 (7) 0.5958 (3) 0.17409 (12) 0.0164 (3)
C5 0.12805 (8) 0.7705 (3) 0.24651 (12) 0.0221 (4)
H5A 0.1578 0.8947 0.2516 0.027*
H5B 0.1087 0.7716 0.2933 0.027*
C6 0.06556 (8) 0.3977 (3) 0.15837 (14) 0.0248 (4)
H6A 0.0312 0.4272 0.0930 0.037*
H6B 0.0514 0.4067 0.2141 0.037*
H6C 0.0828 0.2300 0.1577 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
K1 0.01789 (19) 0.0171 (2) 0.01396 (19) 0.00072 (15) 0.00778 (15) −0.00055 (14)
O1 0.0217 (6) 0.0208 (6) 0.0198 (6) 0.0039 (5) 0.0160 (5) 0.0020 (5)
O2 0.0228 (6) 0.0153 (6) 0.0153 (6) 0.0030 (5) 0.0095 (5) 0.0046 (5)
O3 0.0205 (6) 0.0232 (6) 0.0190 (6) 0.0044 (5) 0.0125 (5) 0.0050 (5)
O4 0.0167 (6) 0.0236 (6) 0.0204 (6) 0.0070 (5) 0.0108 (5) 0.0086 (5)
N1 0.0175 (7) 0.0143 (7) 0.0130 (7) −0.0020 (6) 0.0076 (6) −0.0014 (6)
C1 0.0142 (8) 0.0147 (8) 0.0156 (8) 0.0008 (6) 0.0080 (7) 0.0004 (6)
C2 0.0160 (9) 0.0148 (8) 0.0159 (8) −0.0013 (7) 0.0065 (7) −0.0038 (7)
C3 0.0198 (9) 0.0241 (9) 0.0201 (9) 0.0057 (8) 0.0082 (8) 0.0083 (7)
C4 0.0159 (8) 0.0185 (9) 0.0169 (9) 0.0066 (7) 0.0086 (7) 0.0053 (7)
C5 0.0261 (10) 0.0238 (9) 0.0207 (9) 0.0074 (7) 0.0138 (8) 0.0046 (7)
C6 0.0237 (10) 0.0247 (9) 0.0320 (10) 0.0009 (7) 0.0175 (9) 0.0046 (8)

Geometric parameters (Å, °)

K1—O1i 2.7036 (10) O4—C2 1.3591 (18)
K1—O2ii 2.7539 (11) O4—C3 1.4447 (18)
K1—O3i 2.7988 (11) N1—C1 1.3516 (19)
K1—O1 2.7994 (11) N1—K1iv 3.2874 (12)
K1—O2 2.8896 (10) C1—C2 1.451 (2)
K1—O3iii 2.8970 (12) C1—C4 1.4917 (19)
K1—O1iii 2.9080 (11) C1—K1iv 3.4260 (15)
K1—C5ii 3.0584 (16) C2—K1iv 3.2747 (16)
K1—N1 3.2542 (13) C3—H3A 0.9800
K1—C2iii 3.2747 (16) C3—H3B 0.9800
K1—N1iii 3.2874 (12) C3—H3C 0.9800
K1—C4ii 3.3355 (16) C4—C5 1.325 (2)
O1—N1 1.2799 (14) C4—C6 1.503 (2)
O1—K1i 2.7036 (10) C4—K1v 3.3355 (16)
O1—K1iv 2.9081 (11) C5—K1v 3.0583 (16)
O2—N1 1.2856 (15) C5—H5A 0.9500
O2—K1v 2.7539 (11) C5—H5B 0.9500
O3—C2 1.2219 (16) C6—H6A 0.9800
O3—K1i 2.7989 (11) C6—H6B 0.9800
O3—K1iv 2.8970 (12) C6—H6C 0.9800
O1i—K1—O2ii 162.38 (3) N1—K1—C4ii 93.33 (4)
O1i—K1—O3i 59.21 (3) C2iii—K1—C4ii 145.11 (4)
O2ii—K1—O3i 106.36 (3) N1iii—K1—C4ii 118.00 (3)
O1i—K1—O1 71.80 (3) N1—O1—K1i 146.87 (9)
O2ii—K1—O1 117.16 (3) N1—O1—K1 98.95 (7)
O3i—K1—O1 127.70 (3) K1i—O1—K1 108.20 (3)
O1i—K1—O2 116.67 (3) N1—O1—K1iv 95.49 (7)
O2ii—K1—O2 75.42 (2) K1i—O1—K1iv 78.14 (3)
O3i—K1—O2 168.78 (3) K1—O1—K1iv 135.94 (4)
O1—K1—O2 45.40 (3) N1—O2—K1v 120.14 (8)
O1i—K1—O3iii 76.57 (3) N1—O2—K1 94.53 (7)
O2ii—K1—O3iii 118.77 (3) K1v—O2—K1 129.79 (4)
O3i—K1—O3iii 103.16 (3) C2—O3—K1i 136.99 (9)
O1—K1—O3iii 80.73 (3) C2—O3—K1iv 96.80 (9)
O2—K1—O3iii 85.11 (3) K1i—O3—K1iv 76.84 (3)
O1i—K1—O1iii 101.86 (3) C2—O4—C3 115.46 (12)
O2ii—K1—O1iii 82.21 (3) O1—N1—O2 117.81 (11)
O3i—K1—O1iii 74.94 (3) O1—N1—C1 123.09 (12)
O1—K1—O1iii 135.94 (4) O2—N1—C1 119.10 (12)
O2—K1—O1iii 116.22 (3) O1—N1—K1 58.18 (6)
O3iii—K1—O1iii 55.87 (3) O2—N1—K1 62.27 (7)
O1i—K1—C5ii 96.14 (4) C1—N1—K1 163.88 (10)
O2ii—K1—C5ii 72.78 (4) O1—N1—K1iv 61.71 (6)
O3i—K1—C5ii 90.87 (4) O2—N1—K1iv 127.10 (9)
O1—K1—C5ii 76.55 (4) C1—N1—K1iv 84.21 (8)
O2—K1—C5ii 79.00 (4) K1—N1—K1iv 107.96 (4)
O3iii—K1—C5ii 157.29 (4) N1—C1—C2 120.36 (13)
O1iii—K1—C5ii 146.51 (4) N1—C1—C4 117.74 (13)
O1i—K1—N1 93.48 (3) C2—C1—C4 121.88 (13)
O2ii—K1—N1 98.04 (3) N1—C1—K1iv 72.68 (8)
O3i—K1—N1 150.55 (3) C2—C1—K1iv 71.72 (8)
O1—K1—N1 22.86 (3) C4—C1—K1iv 129.38 (10)
O2—K1—N1 23.19 (3) O3—C2—O4 121.61 (14)
O3iii—K1—N1 78.35 (3) O3—C2—C1 129.29 (14)
O1iii—K1—N1 125.49 (3) O4—C2—C1 109.10 (12)
C5ii—K1—N1 80.70 (4) O3—C2—K1iv 61.45 (8)
O1i—K1—C2iii 97.99 (4) O4—C2—K1iv 135.44 (9)
O2ii—K1—C2iii 98.10 (4) C1—C2—K1iv 83.41 (9)
O3i—K1—C2iii 118.31 (4) O4—C3—H3A 109.5
O1—K1—C2iii 83.79 (3) O4—C3—H3B 109.5
O2—K1—C2iii 71.83 (3) H3A—C3—H3B 109.5
O3iii—K1—C2iii 21.75 (3) O4—C3—H3C 109.5
O1iii—K1—C2iii 53.27 (3) H3A—C3—H3C 109.5
C5ii—K1—C2iii 150.79 (4) H3B—C3—H3C 109.5
N1—K1—C2iii 73.06 (3) C5—C4—C1 119.13 (14)
O1i—K1—N1iii 120.52 (3) C5—C4—C6 123.51 (14)
O2ii—K1—N1iii 68.28 (3) C1—C4—C6 117.33 (13)
O3i—K1—N1iii 96.40 (3) C5—C4—K1v 66.48 (9)
O1—K1—N1iii 125.11 (3) C1—C4—K1v 99.55 (9)
O2—K1—N1iii 94.52 (3) C6—C4—K1v 105.93 (10)
O3iii—K1—N1iii 56.00 (3) C4—C5—K1v 90.11 (10)
O1iii—K1—N1iii 22.80 (3) C4—C5—H5A 120.0
C5ii—K1—N1iii 140.88 (4) K1v—C5—H5A 88.2
N1—K1—N1iii 107.96 (4) C4—C5—H5B 120.0
C2iii—K1—N1iii 43.50 (4) K1v—C5—H5B 91.7
O1i—K1—C4ii 115.12 (4) H5A—C5—H5B 120.0
O2ii—K1—C4ii 51.13 (3) C4—C6—H6A 109.5
O3i—K1—C4ii 89.44 (4) C4—C6—H6B 109.5
O1—K1—C4ii 95.85 (4) H6A—C6—H6B 109.5
O2—K1—C4ii 83.16 (3) C4—C6—H6C 109.5
O3iii—K1—C4ii 166.33 (3) H6A—C6—H6C 109.5
O1iii—K1—C4ii 124.33 (4) H6B—C6—H6C 109.5
C5ii—K1—C4ii 23.41 (4)
O1i—K1—O1—N1 160.77 (10) O1iii—K1—N1—O1 −125.49 (9)
O2ii—K1—O1—N1 −35.71 (9) C5ii—K1—N1—O1 77.40 (8)
O3i—K1—O1—N1 −178.51 (7) C2iii—K1—N1—O1 −115.56 (8)
O2—K1—O1—N1 −10.30 (7) N1iii—K1—N1—O1 −141.94 (7)
O3iii—K1—O1—N1 81.97 (8) C4ii—K1—N1—O1 97.17 (8)
O1iii—K1—O1—N1 72.42 (10) O1i—K1—N1—O2 −179.41 (8)
C5ii—K1—O1—N1 −98.01 (8) O2ii—K1—N1—O2 −12.78 (9)
C2iii—K1—O1—N1 60.23 (8) O3i—K1—N1—O2 −158.75 (8)
N1iii—K1—O1—N1 45.79 (8) O1—K1—N1—O2 −161.15 (13)
C4ii—K1—O1—N1 −84.68 (8) O3iii—K1—N1—O2 105.08 (8)
O1i—K1—O1—K1i 0.0 O1iii—K1—N1—O2 73.36 (8)
O2ii—K1—O1—K1i 163.52 (4) C5ii—K1—N1—O2 −83.74 (8)
O3i—K1—O1—K1i 20.72 (6) C2iii—K1—N1—O2 83.29 (8)
O2—K1—O1—K1i −171.07 (6) N1iii—K1—N1—O2 56.91 (9)
O3iii—K1—O1—K1i −78.80 (4) C4ii—K1—N1—O2 −63.97 (8)
O1iii—K1—O1—K1i −88.35 (6) O1i—K1—N1—C1 81.4 (3)
C5ii—K1—O1—K1i 101.21 (5) O2ii—K1—N1—C1 −112.0 (3)
N1—K1—O1—K1i −160.77 (10) O3i—K1—N1—C1 102.0 (3)
C2iii—K1—O1—K1i −100.54 (4) O1—K1—N1—C1 99.6 (4)
N1iii—K1—O1—K1i −114.98 (4) O2—K1—N1—C1 −99.2 (3)
C4ii—K1—O1—K1i 114.55 (4) O3iii—K1—N1—C1 5.9 (3)
O1i—K1—O1—K1iv −91.64 (6) O1iii—K1—N1—C1 −25.9 (3)
O2ii—K1—O1—K1iv 71.88 (6) C5ii—K1—N1—C1 177.0 (3)
O3i—K1—O1—K1iv −70.93 (7) C2iii—K1—N1—C1 −15.9 (3)
O2—K1—O1—K1iv 97.29 (7) N1iii—K1—N1—C1 −42.3 (4)
O3iii—K1—O1—K1iv −170.45 (6) C4ii—K1—N1—C1 −163.2 (3)
O1iii—K1—O1—K1iv 180.0 O1i—K1—N1—K1iv −56.32 (4)
C5ii—K1—O1—K1iv 9.57 (6) O2ii—K1—N1—K1iv 110.31 (4)
N1—K1—O1—K1iv 107.58 (10) O3i—K1—N1—K1iv −35.66 (9)
C2iii—K1—O1—K1iv 167.82 (6) O1—K1—N1—K1iv −38.06 (7)
N1iii—K1—O1—K1iv 153.38 (4) O2—K1—N1—K1iv 123.09 (9)
C4ii—K1—O1—K1iv 22.91 (6) O3iii—K1—N1—K1iv −131.83 (4)
O1i—K1—O2—N1 0.66 (9) O1iii—K1—N1—K1iv −163.55 (3)
O2ii—K1—O2—N1 166.92 (9) C5ii—K1—N1—K1iv 39.34 (4)
O3i—K1—O2—N1 66.31 (19) C2iii—K1—N1—K1iv −153.62 (4)
O1—K1—O2—N1 10.16 (7) N1iii—K1—N1—K1iv 180.0
O3iii—K1—O2—N1 −71.65 (8) C4ii—K1—N1—K1iv 59.12 (4)
O1iii—K1—O2—N1 −119.59 (8) O1—N1—C1—C2 5.1 (2)
C5ii—K1—O2—N1 92.06 (8) O2—N1—C1—C2 −174.70 (13)
C2iii—K1—O2—N1 −89.27 (8) K1—N1—C1—C2 −84.2 (4)
N1iii—K1—O2—N1 −126.92 (9) K1iv—N1—C1—C2 55.71 (13)
C4ii—K1—O2—N1 115.38 (8) O1—N1—C1—C4 −176.54 (12)
O1i—K1—O2—K1v −135.53 (5) O2—N1—C1—C4 3.7 (2)
O2ii—K1—O2—K1v 30.73 (5) K1—N1—C1—C4 94.1 (3)
O3i—K1—O2—K1v −69.88 (17) K1iv—N1—C1—C4 −125.94 (12)
O1—K1—O2—K1v −126.03 (7) O1—N1—C1—K1iv −50.60 (12)
O3iii—K1—O2—K1v 152.16 (5) O2—N1—C1—K1iv 129.60 (12)
O1iii—K1—O2—K1v 104.22 (5) K1—N1—C1—K1iv −139.9 (3)
C5ii—K1—O2—K1v −44.14 (6) K1i—O3—C2—O4 −153.88 (10)
N1—K1—O2—K1v −136.19 (11) K1iv—O3—C2—O4 128.14 (13)
C2iii—K1—O2—K1v 134.54 (6) K1i—O3—C2—C1 25.9 (3)
N1iii—K1—O2—K1v 96.89 (5) K1iv—O3—C2—C1 −52.12 (17)
C4ii—K1—O2—K1v −20.81 (5) K1i—O3—C2—K1iv 77.98 (12)
K1i—O1—N1—O2 163.96 (11) C3—O4—C2—O3 −2.9 (2)
K1—O1—N1—O2 18.87 (12) C3—O4—C2—C1 177.36 (12)
K1iv—O1—N1—O2 −119.37 (11) C3—O4—C2—K1iv 77.08 (17)
K1i—O1—N1—C1 −15.8 (2) N1—C1—C2—O3 −11.9 (2)
K1—O1—N1—C1 −160.93 (12) C4—C1—C2—O3 169.81 (15)
K1iv—O1—N1—C1 60.82 (14) K1iv—C1—C2—O3 44.26 (15)
K1i—O1—N1—K1 145.09 (16) N1—C1—C2—O4 167.86 (13)
K1iv—O1—N1—K1 −138.24 (6) C4—C1—C2—O4 −10.4 (2)
K1i—O1—N1—K1iv −76.67 (13) K1iv—C1—C2—O4 −135.97 (11)
K1—O1—N1—K1iv 138.24 (6) N1—C1—C2—K1iv −56.16 (13)
K1v—O2—N1—O1 123.95 (10) C4—C1—C2—K1iv 125.55 (13)
K1—O2—N1—O1 −18.09 (12) N1—C1—C4—C5 101.20 (18)
K1v—O2—N1—C1 −56.24 (15) C2—C1—C4—C5 −80.5 (2)
K1—O2—N1—C1 161.72 (11) K1iv—C1—C4—C5 11.4 (2)
K1v—O2—N1—K1 142.04 (8) N1—C1—C4—C6 −80.71 (18)
K1v—O2—N1—K1iv 49.79 (12) C2—C1—C4—C6 97.62 (18)
K1—O2—N1—K1iv −92.25 (8) K1iv—C1—C4—C6 −170.51 (10)
O1i—K1—N1—O1 −18.26 (10) N1—C1—C4—K1v 32.88 (14)
O2ii—K1—N1—O1 148.37 (8) C2—C1—C4—K1v −148.79 (12)
O3i—K1—N1—O1 2.40 (12) K1iv—C1—C4—K1v −56.92 (11)
O2—K1—N1—O1 161.15 (13) C1—C4—C5—K1v −87.97 (13)
O3iii—K1—N1—O1 −93.78 (8) C6—C4—C5—K1v 94.06 (15)

Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, y−1, z; (iv) x, y+1, z; (v) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2024).

References

  1. Baldwin, J. E., Haber, S. B., Hoskins, C. & Kruse, L. I. (1977). J. Org. Chem.42, 1239–1241. [DOI] [PubMed]
  2. Beal, L. M., Liu, B., Chu, W. & Moeller, K. D. (2000). Tetrahedron, 56, 10113–10125.
  3. Bouveault, L. & Wahl, A. (1901). Bull. Soc. Chim. Fr.25, 800–817.
  4. Davenport, G., Hall, S. & Dreissig, W. (1999). ORTEP in Xtal3.7 System. Edited by S. R. Hall, D. J. du Boulay & R. Olthof-Hazekamp. University of Western Australia, Australia.
  5. Grauer, A. & König, B. (2009). Eur. J. Org. Chem.30, 5099–50111.
  6. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  7. Keller, E. (1999). SCHAKAL99 University of Freiburg, Germany.
  8. Kemp, D. S., Boyd, J. G. & Muendel, C. C. (1991). Nature (London), 352, 451–454. [DOI] [PubMed]
  9. Kemp, D. S., Curran, T. P., Boyd, J. G. & Allen, T. J. (1991). J. Org. Chem.56, 6683–6697.
  10. Kühne, R., Oschkinat, H., Brockmann, C. & Schmalz, H.-G. (2008). Ger. Patent WO 2008/040332 A1.
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Vagner, J., Qu, H. & Hruby, V. J. (2008). Curr. Opin. Chem. Biol.12, 292–296. [DOI] [PMC free article] [PubMed]
  15. Westrip, S. P. (2010). publCIF In preparation.
  16. Wu, Y.-D. & Gellman, S. (2008). Acc. Chem. Res.41, 1231–1232. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810010159/jj2024sup1.cif

e-66-0m461-sup1.cif (23KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010159/jj2024Isup2.hkl

e-66-0m461-Isup2.hkl (89.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES