Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 17;66(Pt 4):o851. doi: 10.1107/S160053681000927X

3-(2,4-Dichloro­phen­yl)-5-phenyl-1,2,4-oxadiazole

Hoong-Kun Fun a,*,, Mohd Mustaqim Rosli a, Sankappa Rai b, Arun M Isloor c, Prakash Shetty d
PMCID: PMC2984080  PMID: 21580675

Abstract

In the title compound, C14H8Cl2N2O, the dihedral angles between the plane of the oxadiazole ring and those of the benzene rings are 2.3 (1) and 9.5 (1)°. In the crystal, mol­ecules are linked into chains along the c axis by C—H⋯Cl inter­actions. These chains are stacked along the a axis.

Related literature

For the biological properties of heterocyclic compounds including oxadiazo­les, see: Andersen et al. (1994); Showell et al. (1991); Watjen et al. (1989); Swain et al. (1991); Clitherow et al. (1996). For their pharmacological and medicinal activity, see: Isloor et al. (2010); Chandrakantha et al. (2010). For a related structure, see: Wang et al. (2006). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-0o851-scheme1.jpg

Experimental

Crystal data

  • C14H8Cl2N2O

  • M r = 291.12

  • Triclinic, Inline graphic

  • a = 3.8035 (2) Å

  • b = 10.9666 (7) Å

  • c = 14.6949 (9) Å

  • α = 99.044 (2)°

  • β = 91.158 (2)°

  • γ = 98.891 (2)°

  • V = 597.43 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 100 K

  • 0.41 × 0.13 × 0.09 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.809, T max = 0.953

  • 12084 measured reflections

  • 2692 independent reflections

  • 2355 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.121

  • S = 1.14

  • 2692 reflections

  • 204 parameters

  • All H-atom parameters refined

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681000927X/sj2743sup1.cif

e-66-0o851-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000927X/sj2743Isup2.hkl

e-66-0o851-Isup2.hkl (132.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯Cl1i 0.95 (3) 2.81 (3) 3.577 (2) 138.6 (19)

Symmetry code: (i) Inline graphic.

Acknowledgments

AMI is grateful to Professor Sandeep Sancheti, Director, National Institute of Technology-Karnataka, India for his encouragement and providing research facilities. FHK and MMR thank Universiti Sains Malaysia for the Research University Golden Goose grant (No. 1001/PFIZIK/811012).

supplementary crystallographic information

Comment

Heterocyclic compounds are becoming increasingly important in recent years due to their pharmacological activities (Isloor et al. 2010). Nitrogen- and oxygen-containing five/six membered heterocyclic compounds are of enormous significance in the field of medicinal chemistry (Chandrakantha et al., 2010). Oxadiazoles play a very vital role in the preparation of various biologically active drugs with anti-inflammatory (Andersen et al., 1994), anti-cancer (Showell et al., 1991), anti-HIV (Watjen et al., 1989), anti-diabetic and anti-microbial (Swain et al., 1991) activities. The results of biological studies showed that oxadiazole derivatives also possess maximum anti-inflammatory, analgesic and minimum ulcerogenic and lipid per-oxidation (Clitherow et al., 1996) properties.

The geometrical parameters of (I) are within the normal range and comparable with those for a related structure (Wang et al., 2006). The mean plane of of the oxadiazole ring (C7/C8/N1/N2/O1) is almost coplanar with the C9-C14 benzene ring [dihedral angle = 2.3 (1)°] but slightly twisted with the C1-C6 benzene ring [dihedral angle = 9.5 (1)°].

The C-H···Cl (Table 1) interactions link the molecules into infinite chains along the c-axis and these chains are stacked along the a-axis.

Experimental

The title compound was prepared by heating a solution of 2,4-dichloro- N'-hydroxy-benzamidine (1 g,0.0042 mol) and benzoylchloride (0.65 g.0.004 mol) in pyridine (30 ml). The reaction mixture was heated at 114 °C for 1.5 hour and concentrated under vacuum. Further purification was done by column chromatography. The solid obtained was recrystalised using dichloromethane.Yield: 1 g (76%), Melting point 413-415 K.

Refinement

All H atoms were located in a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal structure of (I), showing infinite chains along the c-axis.

Crystal data

C14H8Cl2N2O Z = 2
Mr = 291.12 F(000) = 296
Triclinic, P1 Dx = 1.618 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 3.8035 (2) Å Cell parameters from 7625 reflections
b = 10.9666 (7) Å θ = 2.5–36.0°
c = 14.6949 (9) Å µ = 0.53 mm1
α = 99.044 (2)° T = 100 K
β = 91.158 (2)° Block, colourless
γ = 98.891 (2)° 0.41 × 0.13 × 0.09 mm
V = 597.43 (6) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2692 independent reflections
Radiation source: fine-focus sealed tube 2355 reflections with I > 2σ(I)
graphite Rint = 0.035
φ and ω scans θmax = 27.5°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −4→4
Tmin = 0.809, Tmax = 0.953 k = −14→14
12084 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 All H-atom parameters refined
S = 1.14 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.3227P] where P = (Fo2 + 2Fc2)/3
2692 reflections (Δ/σ)max = 0.001
204 parameters Δρmax = 0.55 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.67894 (14) 0.17290 (4) 0.56305 (3) 0.02303 (17)
Cl2 0.74585 (13) 0.52050 (4) 0.34575 (3) 0.01905 (16)
O1 1.0808 (4) 0.40239 (12) 0.07273 (9) 0.0188 (3)
N1 1.1293 (4) 0.22993 (14) 0.12866 (10) 0.0152 (3)
N2 0.9704 (5) 0.42193 (15) 0.16440 (11) 0.0186 (3)
C1 1.3840 (5) 0.31992 (18) −0.09742 (13) 0.0182 (4)
C2 1.5167 (6) 0.27272 (19) −0.18064 (13) 0.0207 (4)
C3 1.5623 (5) 0.14861 (19) −0.19917 (13) 0.0197 (4)
C4 1.4763 (5) 0.06975 (18) −0.13435 (12) 0.0180 (4)
C5 1.3476 (5) 0.11647 (17) −0.05099 (12) 0.0157 (4)
C6 1.3013 (5) 0.24188 (17) −0.03204 (12) 0.0146 (4)
C7 1.1707 (5) 0.28734 (17) 0.05746 (12) 0.0152 (4)
C8 1.0052 (5) 0.31698 (17) 0.19311 (12) 0.0141 (4)
C9 0.9255 (5) 0.28872 (16) 0.28577 (12) 0.0146 (4)
C10 0.9670 (5) 0.16979 (17) 0.30360 (12) 0.0155 (4)
C11 0.8962 (5) 0.13252 (18) 0.38802 (13) 0.0172 (4)
C12 0.7795 (5) 0.21663 (18) 0.45703 (12) 0.0171 (4)
C13 0.7382 (5) 0.33600 (18) 0.44337 (12) 0.0172 (4)
C14 0.8094 (5) 0.37087 (16) 0.35794 (12) 0.0155 (4)
H1A 1.360 (7) 0.402 (3) −0.0859 (17) 0.026 (6)*
H2A 1.572 (7) 0.323 (2) −0.2233 (18) 0.024 (6)*
H3A 1.664 (7) 0.121 (2) −0.2558 (18) 0.029 (7)*
H4A 1.483 (6) −0.015 (2) −0.1458 (15) 0.015 (5)*
H5A 1.325 (7) 0.068 (2) −0.0091 (17) 0.020 (6)*
H10A 1.028 (7) 0.109 (2) 0.2564 (16) 0.019 (6)*
H11A 0.922 (6) 0.054 (2) 0.3967 (15) 0.014 (5)*
H13A 0.635 (7) 0.390 (2) 0.4924 (17) 0.022 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0276 (3) 0.0272 (3) 0.0163 (2) 0.0063 (2) 0.00286 (18) 0.00754 (18)
Cl2 0.0228 (3) 0.0169 (2) 0.0191 (2) 0.00957 (18) −0.00111 (17) 0.00205 (17)
O1 0.0261 (8) 0.0160 (6) 0.0165 (6) 0.0086 (5) 0.0003 (5) 0.0045 (5)
N1 0.0149 (8) 0.0165 (7) 0.0148 (7) 0.0051 (6) −0.0008 (6) 0.0025 (6)
N2 0.0233 (9) 0.0185 (8) 0.0160 (7) 0.0077 (6) 0.0014 (6) 0.0043 (6)
C1 0.0180 (10) 0.0182 (9) 0.0199 (9) 0.0044 (7) −0.0031 (7) 0.0068 (7)
C2 0.0208 (10) 0.0256 (10) 0.0180 (9) 0.0034 (8) −0.0013 (7) 0.0112 (7)
C3 0.0185 (10) 0.0277 (10) 0.0139 (8) 0.0062 (8) −0.0005 (7) 0.0039 (7)
C4 0.0174 (10) 0.0194 (9) 0.0178 (8) 0.0050 (7) −0.0031 (7) 0.0035 (7)
C5 0.0138 (9) 0.0173 (8) 0.0171 (8) 0.0031 (7) −0.0019 (6) 0.0063 (7)
C6 0.0121 (9) 0.0171 (8) 0.0148 (8) 0.0026 (7) −0.0031 (6) 0.0037 (6)
C7 0.0128 (9) 0.0153 (8) 0.0181 (8) 0.0037 (7) −0.0037 (6) 0.0036 (6)
C8 0.0106 (9) 0.0157 (8) 0.0160 (8) 0.0035 (6) −0.0028 (6) 0.0016 (6)
C9 0.0103 (9) 0.0176 (9) 0.0157 (8) 0.0023 (7) −0.0034 (6) 0.0026 (6)
C10 0.0137 (9) 0.0166 (8) 0.0163 (8) 0.0040 (7) −0.0016 (6) 0.0013 (6)
C11 0.0170 (10) 0.0163 (9) 0.0191 (8) 0.0032 (7) −0.0021 (7) 0.0050 (7)
C12 0.0146 (9) 0.0222 (9) 0.0150 (8) 0.0027 (7) −0.0016 (6) 0.0049 (7)
C13 0.0150 (9) 0.0203 (9) 0.0164 (8) 0.0050 (7) −0.0024 (7) 0.0009 (7)
C14 0.0128 (9) 0.0157 (8) 0.0183 (8) 0.0036 (7) −0.0029 (6) 0.0026 (7)

Geometric parameters (Å, °)

Cl1—C12 1.7338 (18) C4—H4A 0.92 (2)
Cl2—C14 1.7310 (18) C5—C6 1.399 (3)
O1—C7 1.344 (2) C5—H5A 0.87 (2)
O1—N2 1.413 (2) C6—C7 1.457 (2)
N1—C7 1.303 (2) C8—C9 1.470 (2)
N1—C8 1.380 (2) C9—C10 1.401 (3)
N2—C8 1.311 (2) C9—C14 1.405 (3)
C1—C2 1.387 (3) C10—C11 1.385 (3)
C1—C6 1.394 (2) C10—H10A 0.94 (2)
C1—H1A 0.91 (3) C11—C12 1.388 (3)
C2—C3 1.384 (3) C11—H11A 0.91 (2)
C2—H2A 0.91 (3) C12—C13 1.387 (3)
C3—C4 1.395 (3) C13—C14 1.389 (3)
C3—H3A 0.95 (3) C13—H13A 0.99 (3)
C4—C5 1.381 (3)
C7—O1—N2 106.71 (14) O1—C7—C6 119.03 (16)
C7—N1—C8 102.57 (15) N2—C8—N1 114.69 (16)
C8—N2—O1 103.00 (15) N2—C8—C9 125.14 (17)
C2—C1—C6 119.53 (18) N1—C8—C9 120.17 (15)
C2—C1—H1A 119.2 (16) C10—C9—C14 117.16 (16)
C6—C1—H1A 121.2 (16) C10—C9—C8 117.41 (16)
C3—C2—C1 120.30 (17) C14—C9—C8 125.43 (16)
C3—C2—H2A 119.8 (16) C11—C10—C9 122.41 (17)
C1—C2—H2A 119.9 (16) C11—C10—H10A 116.9 (14)
C2—C3—C4 120.40 (18) C9—C10—H10A 120.5 (14)
C2—C3—H3A 117.6 (16) C10—C11—C12 118.35 (17)
C4—C3—H3A 122.0 (16) C10—C11—H11A 120.0 (14)
C5—C4—C3 119.60 (18) C12—C11—H11A 121.6 (14)
C5—C4—H4A 116.9 (14) C13—C12—C11 121.57 (17)
C3—C4—H4A 123.3 (14) C13—C12—Cl1 118.49 (15)
C4—C5—C6 120.14 (17) C11—C12—Cl1 119.94 (15)
C4—C5—H5A 117.2 (16) C12—C13—C14 118.95 (17)
C6—C5—H5A 122.2 (16) C12—C13—H13A 118.8 (14)
C1—C6—C5 120.04 (17) C14—C13—H13A 121.9 (14)
C1—C6—C7 121.86 (17) C13—C14—C9 121.56 (17)
C5—C6—C7 118.10 (16) C13—C14—Cl2 116.22 (14)
N1—C7—O1 113.04 (16) C9—C14—Cl2 122.21 (14)
N1—C7—C6 127.93 (16)
C7—O1—N2—C8 −0.24 (19) C7—N1—C8—N2 0.1 (2)
C6—C1—C2—C3 0.8 (3) C7—N1—C8—C9 −179.53 (16)
C1—C2—C3—C4 −0.2 (3) N2—C8—C9—C10 177.93 (18)
C2—C3—C4—C5 −0.5 (3) N1—C8—C9—C10 −2.5 (3)
C3—C4—C5—C6 0.5 (3) N2—C8—C9—C14 −1.8 (3)
C2—C1—C6—C5 −0.9 (3) N1—C8—C9—C14 177.79 (17)
C2—C1—C6—C7 178.25 (17) C14—C9—C10—C11 0.4 (3)
C4—C5—C6—C1 0.2 (3) C8—C9—C10—C11 −179.33 (17)
C4—C5—C6—C7 −178.94 (17) C9—C10—C11—C12 0.1 (3)
C8—N1—C7—O1 −0.2 (2) C10—C11—C12—C13 −0.9 (3)
C8—N1—C7—C6 179.12 (18) C10—C11—C12—Cl1 178.69 (14)
N2—O1—C7—N1 0.3 (2) C11—C12—C13—C14 1.2 (3)
N2—O1—C7—C6 −179.11 (15) Cl1—C12—C13—C14 −178.38 (14)
C1—C6—C7—N1 −169.98 (19) C12—C13—C14—C9 −0.7 (3)
C5—C6—C7—N1 9.1 (3) C12—C13—C14—Cl2 179.14 (14)
C1—C6—C7—O1 9.4 (3) C10—C9—C14—C13 −0.1 (3)
C5—C6—C7—O1 −171.53 (16) C8—C9—C14—C13 179.63 (17)
O1—N2—C8—N1 0.1 (2) C10—C9—C14—Cl2 −179.90 (14)
O1—N2—C8—C9 179.68 (16) C8—C9—C14—Cl2 −0.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3A···Cl1i 0.95 (3) 2.81 (3) 3.577 (2) 138.6 (19)

Symmetry codes: (i) x+1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2743).

References

  1. Andersen, K. E., Jørgensen, A. S. & Braestrup, C. (1994). Eur. J. Med. Chem.29, 393-399.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chandrakantha, B., Shetty, P., Nambiyar, V., Isloor, N. & Isloor, A. M. (2010). Eur. J. Med. Chem.45, 1206–1210. [DOI] [PubMed]
  4. Clitherow, J. W., Beswick, P., Irving, W. J., Scopes, D. I. C., Barnes, J. C., Clapham, J., Brown, J. D., Evans, D. J. & Hayes, A. G. (1996). Bioorg. Med. Chem. Lett.6, 833-838.
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  6. Isloor, A. M., Kalluraya, B. & Pai, K. S. (2010). Eur. J. Med. Chem.45, 825–830 [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Showell, G. A., Gibbons, T. L., Kneen, C. O., MacLeod, A. M., Merchant, K., Saunders, J., Freedman, S. B., Patel, S. & Baker, R. (1991). J. Med. Chem.34, 1086–1094. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Swain, C. J., Baker, R., Kneen, C., Moseley, J., Saunders, J., Seward, E. M., Stevenson, G., Beer, M., Stanton, J. & Watling, K. (1991). J. Med. Chem.34, 140–151. [DOI] [PubMed]
  11. Wang, H.-B., Liu, Z.-Q., Wang, H.-B. & Yan, X.-C. (2006). Acta Cryst. E62, o4715–o4716.
  12. Watjen, F., Baker, R., Engelstoff, M., Herbert, R., MacLeod, A., Knight, A., Merchant, K., Moseley, J., Saunders, J., Swain, C. J., Wang, E. & Springer, J. P. (1989). J. Med. Chem.32, 282–2291. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681000927X/sj2743sup1.cif

e-66-0o851-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000927X/sj2743Isup2.hkl

e-66-0o851-Isup2.hkl (132.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES