Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 27;66(Pt 4):m459–m460. doi: 10.1107/S1600536810010536

catena-Poly[[(2-methyl­benzoato-κ2 O,O′)sodium]-di-μ-aqua-κ4 O:O′]

Muhammad Danish a,*, Iram Saleem a, Nazir Ahmad a, Abdul Rauf Raza a, Wojciech Starosta b, Janusz Leciejewicz b
PMCID: PMC2984086  PMID: 21580545

Abstract

In the title coordination polymer, [Na(C8H7O2)(H2O)2]n, the cation is chelated by the carboxyl­ate O atoms of the anion in a bidentate mode and is surrounded by the O atoms of four water mol­ecules. The coordination of the Na+ cation is distorted octa­hedral. The water mol­ecules bridge adjacent metal cations, forming polymeric layers parallel to (100). The structure is stabilized by an extensive network of O—H⋯O hydrogen bonds.

Related literature

Tin complexes with organic ligands have been studied intensively due to their biological activity, see, for example: Shahzadi et al. (2007). For 2-methyl­benzoic and 4-methyl­benzoic acids as potent allergic sensitizers when applied to human skin, see: Emmet & Suskind (1973), and as inhibitors of lettuce fruit germination, see: Reynolds (1978). Sodium 2-methyl­benzoate has been studied as a precursor in the synthesis of biologically active tin(IV) complexes. For the structure of a sodium complex with a 2-methyl-3,5-dinitro­benzoate ligand, see: Danish et al. (2010).graphic file with name e-66-0m459-scheme1.jpg

Experimental

Crystal data

  • [Na(C8H7O2)(H2O)2]

  • M r = 194.16

  • Monoclinic, Inline graphic

  • a = 16.145 (3) Å

  • b = 8.1155 (16) Å

  • c = 7.3986 (15) Å

  • β = 92.98 (3)°

  • V = 968.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.55 × 0.41 × 0.11 mm

Data collection

  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.952, T max = 0.991

  • 3057 measured reflections

  • 2845 independent reflections

  • 1919 reflections with I > 2σ(I)

  • R int = 0.024

  • 3 standard reflections every 200 reflections intensity decay: 0.8%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.141

  • S = 1.02

  • 2845 reflections

  • 151 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810010536/wm2315sup1.cif

e-66-0m459-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010536/wm2315Isup2.hkl

e-66-0m459-Isup2.hkl (139.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Na1—O4 2.3599 (13)
Na1—O4i 2.3689 (13)
Na1—O1 2.4141 (13)
Na1—O3 2.4245 (13)
Na1—O3ii 2.5086 (13)
Na1—O2 2.5387 (14)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H42⋯O1iii 0.84 (3) 1.94 (3) 2.7582 (17) 163 (2)
O4—H41⋯O2iv 0.76 (3) 2.03 (3) 2.7874 (17) 171 (2)
O3—H31⋯O1v 0.88 (3) 1.97 (3) 2.7716 (16) 151 (2)
O3—H32⋯O2i 0.77 (3) 2.10 (3) 2.8265 (16) 158 (2)

Symmetry codes: (i) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

MD acknowledges the Australian Government for the award of an Endeavour Post Doctoral Fellowship for the year 2009–2010.

supplementary crystallographic information

Comment

2-methylbenzoic and 4-methylbenzoic acids were studied as potent allergic sensitizers when applied to human skin (Emmet & Suskind, 1973). They are also used for the inhibition of lettuce fruit germination (Reynolds, 1978). The title compound was isolated as an intermediate during synthesis of biologically active organotin carboxylates (Shahzadi et al., 2007).

In the polymeric structure of the title compound, [Na(C8H7O2)(H2O)2]n, each sodium ion is coordinated by the carboxylic O atoms of the bidentate anion and by four bridging water O atoms (Fig.1). The coordination geometry around the Na+ cation is distorted octahedral with the equatorial plane composed of the carboxylate atoms O1 and O2 and the symmetry-related water O4 and O4i atoms [r.m.s. is 0.0580 (2) Å]. Water O3 and O3ii atoms are at the apical positions. The resulting coordination differs from the one reported in the structure of the Na+ complex with the 2-methyl-3,5-dinitrobenzoate anion. Here the metal exhibits coordination number 7 (Danish et al., 2010). The 2-methylbenzoate ring in the title compound is planar with a r.m.s. of 0.0089 (2) Å; the carboxylic group C17/O1/O2 makes an dihedral angle of 37.1 (2)° with the aromatic ring. Na+ cations form sheets parallel to the (100) plane in which they are grouped into pairs (Fig. 2). In such a pair, Na+ cations are coordinated by ligands with their 2-methylbenzoate rings pointing in the same direction but twisted by an angle of 73.0 (2)° relative to each other. Water O atoms bridge in two directions: via O4 atoms along the b axis and via O3 atoms along the c axis. Water molecules act as donors and carboxylate O atoms as acceptors in a network of O—H··· O hydrogen bonds that consolidate the crystal structure. Geometrical parameters of the hydrogen bonding are listed in Table 2.

Experimental

50 ml of an aqueous solution containing 0.0147 mmol of 2-methylbenzoic acid were added dropwise with continuous stirring at room trmperature to 50 ml of an aqueous solution of sodium bicarbonate (0.0147 mmol). The mixture was then refluxed for 3 hours, cooled to room temperature and concentrated under reduced pressure to afford a dry solid mass which was then purified by re-crystallization from a distilled water-ethanol (4:1) mixture to obtain single crystals.

Refinement

Water H atoms were localized from Fourier maps and refined isotropically without constraints. H atoms attached to toluene-ring C atoms were positioned geometrically and refined with a riding model.

Figures

Fig. 1.

Fig. 1.

A structural unit of (1) with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: (I) x,-y+3/2,z-1;2; (II) -x,y-1/2,-z+1/2.

Fig. 2.

Fig. 2.

Packing diagram of the structure.

Crystal data

[Na(C8H7O2)(H2O)2] F(000) = 408
Mr = 194.16 Dx = 1.332 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 16.145 (3) Å θ = 6–15°
b = 8.1155 (16) Å µ = 0.14 mm1
c = 7.3986 (15) Å T = 293 K
β = 92.98 (3)° Block, colourless
V = 968.1 (3) Å3 0.55 × 0.41 × 0.11 mm
Z = 4

Data collection

Kuma KM-4 four-circle diffractometer 1919 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.024
graphite θmax = 30.1°, θmin = 1.3°
profile data from ω/2θ scans h = −22→22
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) k = 0→11
Tmin = 0.952, Tmax = 0.991 l = −10→0
3057 measured reflections 3 standard reflections every 200 reflections
2845 independent reflections intensity decay: 0.8%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0889P)2 + 0.1369P] where P = (Fo2 + 2Fc2)/3
2845 reflections (Δ/σ)max < 0.001
151 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Na1 0.01791 (3) 0.64831 (7) 0.25611 (7) 0.03320 (17)
O2 0.14852 (7) 0.53347 (14) 0.41532 (13) 0.0386 (2)
C7 0.18004 (8) 0.53264 (15) 0.26404 (16) 0.0273 (2)
C1 0.27247 (8) 0.53757 (16) 0.25234 (17) 0.0305 (3)
C2 0.32656 (10) 0.4527 (2) 0.3718 (2) 0.0425 (3)
C6 0.30354 (11) 0.6271 (3) 0.1107 (2) 0.0492 (4)
C3 0.41092 (11) 0.4583 (3) 0.3414 (3) 0.0562 (5)
C8 0.29779 (16) 0.3518 (4) 0.5275 (4) 0.0852 (9)
H8A 0.2774 0.4239 0.6181 0.128*
H8B 0.3434 0.2884 0.5788 0.128*
H8C 0.2542 0.2789 0.4848 0.128*
C5 0.38805 (13) 0.6352 (3) 0.0885 (4) 0.0694 (6)
C4 0.44096 (12) 0.5494 (3) 0.2038 (4) 0.0672 (6)
O1 0.13648 (6) 0.53062 (13) 0.11780 (13) 0.0367 (2)
O3 0.08470 (7) 0.91596 (13) 0.25956 (15) 0.0365 (2)
O4 −0.05771 (7) 0.74541 (15) 0.49901 (14) 0.0357 (2)
H32 0.1128 (15) 0.918 (3) 0.179 (4) 0.055 (6)*
H31 0.1175 (16) 0.921 (3) 0.357 (4) 0.069 (7)*
H41 −0.0863 (15) 0.676 (3) 0.526 (3) 0.057 (7)*
H42 −0.0901 (14) 0.819 (3) 0.458 (3) 0.056 (6)*
H5 0.2640 (13) 0.693 (3) 0.026 (3) 0.056 (6)*
H2 0.4464 (15) 0.395 (3) 0.412 (3) 0.060 (6)*
H4 0.4058 (17) 0.705 (4) −0.018 (4) 0.092 (9)*
H3 0.495 (2) 0.556 (4) 0.179 (4) 0.096 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Na1 0.0366 (3) 0.0334 (3) 0.0296 (3) 0.0032 (2) 0.0015 (2) 0.0004 (2)
O2 0.0421 (5) 0.0471 (6) 0.0270 (4) −0.0009 (4) 0.0063 (4) 0.0023 (4)
C7 0.0323 (6) 0.0244 (5) 0.0251 (5) −0.0006 (4) 0.0012 (4) 0.0000 (4)
C1 0.0319 (6) 0.0309 (6) 0.0286 (6) −0.0002 (5) 0.0002 (5) −0.0024 (5)
C2 0.0395 (7) 0.0431 (8) 0.0439 (8) 0.0023 (6) −0.0073 (6) 0.0027 (6)
C6 0.0441 (8) 0.0588 (10) 0.0452 (9) −0.0034 (7) 0.0089 (7) 0.0115 (7)
C3 0.0379 (8) 0.0628 (12) 0.0664 (12) 0.0075 (7) −0.0114 (8) −0.0096 (9)
C8 0.0650 (13) 0.106 (2) 0.0834 (16) 0.0098 (13) −0.0112 (12) 0.0597 (15)
C5 0.0497 (11) 0.0876 (16) 0.0730 (14) −0.0130 (10) 0.0234 (10) 0.0141 (12)
C4 0.0341 (8) 0.0854 (16) 0.0830 (15) −0.0045 (9) 0.0118 (9) −0.0171 (12)
O1 0.0374 (5) 0.0440 (6) 0.0279 (5) 0.0005 (4) −0.0045 (4) −0.0024 (4)
O3 0.0474 (6) 0.0369 (5) 0.0253 (5) −0.0008 (4) 0.0018 (4) 0.0001 (4)
O4 0.0415 (5) 0.0336 (5) 0.0320 (5) −0.0002 (5) 0.0009 (4) −0.0016 (4)

Geometric parameters (Å, °)

Na1—O4 2.3599 (13) C2—C8 1.506 (3)
Na1—O4i 2.3689 (13) C6—C5 1.384 (3)
Na1—O1 2.4141 (13) C6—H5 1.02 (2)
Na1—O3 2.4245 (13) C3—C4 1.367 (4)
Na1—O3ii 2.5086 (13) C3—H2 0.91 (3)
Na1—O2 2.5387 (14) C8—H8A 0.9600
Na1—C7 2.7787 (14) C8—H8B 0.9600
Na1—Na1i 4.0508 (8) C8—H8C 0.9600
Na1—Na1iii 4.0508 (8) C5—C4 1.366 (4)
Na1—Na1ii 4.0990 (8) C5—H4 1.02 (3)
Na1—Na1iv 4.0991 (8) C4—H3 0.90 (3)
O2—C7 1.2534 (16) O3—Na1iv 2.5087 (13)
C7—O1 1.2596 (16) O3—H32 0.77 (3)
C7—C1 1.4999 (18) O3—H31 0.88 (3)
C1—C6 1.390 (2) O4—Na1iii 2.3689 (13)
C1—C2 1.392 (2) O4—H41 0.76 (3)
C2—C3 1.393 (3) O4—H42 0.84 (3)
O4—Na1—O4i 102.97 (4) O2—Na1—Na1iv 119.11 (3)
O4—Na1—O1 155.22 (5) C7—Na1—Na1iv 117.81 (3)
O4i—Na1—O1 100.99 (4) Na1i—Na1—Na1iv 65.37 (2)
O4—Na1—O3 86.57 (5) Na1iii—Na1—Na1iv 67.05 (2)
O4i—Na1—O3 83.84 (5) Na1ii—Na1—Na1iv 163.72 (3)
O1—Na1—O3 89.82 (4) C7—O2—Na1 87.34 (8)
O4—Na1—O3ii 85.39 (5) O2—C7—O1 122.18 (12)
O4i—Na1—O3ii 85.70 (5) O2—C7—C1 120.18 (11)
O1—Na1—O3ii 102.67 (4) O1—C7—C1 117.62 (12)
O3—Na1—O3ii 165.05 (4) O2—C7—Na1 65.88 (8)
O4—Na1—O2 102.67 (5) O1—C7—Na1 60.19 (7)
O4i—Na1—O2 152.54 (4) C1—C7—Na1 158.26 (9)
O1—Na1—O2 52.67 (4) C6—C1—C2 119.88 (15)
O3—Na1—O2 88.04 (4) C6—C1—C7 117.16 (13)
O3ii—Na1—O2 106.03 (4) C2—C1—C7 122.92 (13)
O4—Na1—C7 128.38 (5) C1—C2—C3 117.90 (16)
O4i—Na1—C7 125.85 (5) C1—C2—C8 123.11 (16)
O1—Na1—C7 26.92 (4) C3—C2—C8 118.97 (17)
O3—Na1—C7 83.36 (4) C5—C6—C1 120.70 (18)
O3ii—Na1—C7 111.48 (4) C5—C6—H5 119.4 (12)
O2—Na1—C7 26.78 (3) C1—C6—H5 119.8 (12)
O4—Na1—Na1i 125.73 (4) C4—C3—C2 121.71 (18)
O4i—Na1—Na1i 30.99 (3) C4—C3—H2 119.7 (15)
O1—Na1—Na1i 74.72 (3) C2—C3—H2 118.5 (15)
O3—Na1—Na1i 67.88 (3) C2—C8—H8A 109.5
O3ii—Na1—Na1i 107.18 (3) C2—C8—H8B 109.5
O2—Na1—Na1i 122.27 (3) H8A—C8—H8B 109.5
C7—Na1—Na1i 96.45 (4) C2—C8—H8C 109.5
O4—Na1—Na1iii 31.13 (3) H8A—C8—H8C 109.5
O4i—Na1—Na1iii 124.09 (4) H8B—C8—H8C 109.5
O1—Na1—Na1iii 125.87 (3) C4—C5—C6 119.3 (2)
O3—Na1—Na1iii 69.30 (4) C4—C5—H4 124.9 (16)
O3ii—Na1—Na1iii 108.49 (3) C6—C5—H4 115.8 (16)
O2—Na1—Na1iii 76.42 (3) C5—C4—C3 120.39 (17)
C7—Na1—Na1iii 99.38 (4) C5—C4—H3 115 (2)
Na1i—Na1—Na1iii 131.91 (3) C3—C4—H3 125 (2)
O4—Na1—Na1ii 105.63 (4) C7—O1—Na1 92.89 (8)
O4i—Na1—Na1ii 106.05 (4) Na1—O3—Na1iv 112.37 (5)
O1—Na1—Na1ii 73.32 (3) Na1—O3—H32 107.0 (18)
O3—Na1—Na1ii 161.66 (4) Na1iv—O3—H32 111.3 (18)
O3ii—Na1—Na1ii 33.16 (3) Na1—O3—H31 107.4 (17)
O2—Na1—Na1ii 76.09 (3) Na1iv—O3—H31 111.9 (17)
C7—Na1—Na1ii 78.33 (3) H32—O3—H31 106 (2)
Na1i—Na1—Na1ii 112.95 (2) Na1—O4—Na1iii 117.88 (5)
Na1iii—Na1—Na1ii 114.63 (2) Na1—O4—H41 107.1 (18)
O4—Na1—Na1iv 66.94 (3) Na1iii—O4—H41 110.8 (17)
O4i—Na1—Na1iv 63.62 (3) Na1—O4—H42 107.3 (15)
O1—Na1—Na1iv 119.76 (4) Na1iii—O4—H42 108.5 (16)
O3—Na1—Na1iv 34.47 (3) H41—O4—H42 104 (2)
O3ii—Na1—Na1iv 130.62 (4)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x, y−1/2, −z+1/2; (iii) x, −y+3/2, z+1/2; (iv) −x, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H42···O1iv 0.84 (3) 1.94 (3) 2.7582 (17) 163 (2)
O4—H41···O2v 0.76 (3) 2.03 (3) 2.7874 (17) 171 (2)
O3—H31···O1iii 0.88 (3) 1.97 (3) 2.7716 (16) 151 (2)
O3—H32···O2i 0.77 (3) 2.10 (3) 2.8265 (16) 158 (2)

Symmetry codes: (iv) −x, y+1/2, −z+1/2; (v) −x, −y+1, −z+1; (iii) x, −y+3/2, z+1/2; (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2315).

References

  1. Danish, M., Saleem, I., Ahmad, N., Raza, A. R., Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m137. [DOI] [PMC free article] [PubMed]
  2. Emmet, E. A. & Suskind, R. R. (1973). J. Investig. Dermitol 61, 282–285. [DOI] [PubMed]
  3. Kuma (1996). KM-4 Software Kuma Diffraction Ltd, Wrocław, Poland.
  4. Kuma (2001). DATAPROC Kuma Diffraction Ltd, Wrocław, Poland.
  5. Oxford Diffraction (2008). CrysAlis RED Oxford Diffraction Ltd, Yarnton, England
  6. Reynolds, T. (1978). Ann. Bot.42, 419–427.
  7. Shahzadi, S., Shahid, K. & Ali, S. (2007). Russ. J. Coord. Chem.33, 403–411.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810010536/wm2315sup1.cif

e-66-0m459-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010536/wm2315Isup2.hkl

e-66-0m459-Isup2.hkl (139.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES