Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Dec;86(23):9129–9133. doi: 10.1073/pnas.86.23.9129

Recombinant baculoviruses as vectors for identifying proteins encoded by intron-containing members of complex multigene families.

K Iatrou 1, R G Meidinger 1, M R Goldsmith 1
PMCID: PMC298447  PMID: 2556701

Abstract

Using a transfer vector derived from Bombyx mori nuclear polyhedrosis virus (BmNPV), we have constructed recombinant baculoviruses that contain complete silk moth chorion chromosomal genes encoding high-cysteine proteins under the control of the polyhedrin promoter. Silk moth tissue culture cells infected with these recombinant viruses were found to contain abundant RNA sequences of sizes similar to those of the authentic chorion mRNAs. Chorion transcripts present in infected cells were initiated almost exclusively at the cap site of the polyhedrin start site. Primer extension and RNase protection experiments revealed that a considerable proportion of the resultant transcripts were spliced at the same sites as those utilized in follicular cells for the production of functional chorion mRNA. Electrophoretic analysis and immunoprecipitation of the proteins of host cells infected with the recombinant viruses revealed the presence of the corresponding chorion proteins. We conclude that baculovirus vectors can be used for expressing efficiently not only cDNAs or simple genes devoid of intervening sequences but also intron-containing chromosomal genes. Thus, recombinant baculoviruses offer a powerful alternative to hybrid-selected translation, particularly when the identification of proteins encoded by members of complex multigene families is required.

Full text

PDF
9129

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bock S. C., Tiemeier D. C., Mester K., Wu M., Goldsmith M. R. Hybridization-selected translation of Bombyx mori high-cysteine chorion proteins in Xenopus laevis oocytes. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1032–1036. doi: 10.1073/pnas.79.4.1032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Durnin-Goodman E. M., Iatrou K. GrB deletion of the chorion locus of the silkmoth Bombyx mori. Localization of the left breakpoint and isolation of the deletion junction. J Mol Biol. 1989 Feb 20;205(4):633–645. doi: 10.1016/0022-2836(89)90309-4. [DOI] [PubMed] [Google Scholar]
  3. Goldsmith M. R., Rattner E. C., Koehler M. M., Balikov S. R., Bock S. C. Two-dimensional electrophoresis of small-molecular-weight proteins. Anal Biochem. 1979 Oct 15;99(1):33–40. doi: 10.1016/0003-2697(79)90041-1. [DOI] [PubMed] [Google Scholar]
  4. Grace T. D. Establishment of a line of cells from the silkworm Bombyx mori. Nature. 1967 Nov 11;216(5115):613–613. doi: 10.1038/216613a0. [DOI] [PubMed] [Google Scholar]
  5. Iatrou K., Ito K., Witkiewicz H. Polyhedrin gene of Bombyx mori nuclear polyhedrosis virus. J Virol. 1985 May;54(2):436–445. doi: 10.1128/jvi.54.2.436-445.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Iatrou K., Meidinger R. G. Bombyx mori nuclear polyhedrosis virus-based vectors for expressing passenger genes in silkmoth cells under viral or cellular promoter control. Gene. 1989 Jan 30;75(1):59–71. doi: 10.1016/0378-1119(89)90383-1. [DOI] [PubMed] [Google Scholar]
  7. Iatrou K., Tsitilou S. G. Coordinately expressed chorion genes of Bombyx mori: is developmental specificity determined by secondary structure recognition? EMBO J. 1983;2(9):1431–1440. doi: 10.1002/j.1460-2075.1983.tb01604.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Iatrou K., Tsitilou S. G., Goldsmith M. R., Kafatos F. C. Molecular analysis of the GrB mutation in Bombyx mori through the use of chorion cDNA library. Cell. 1980 Jul;20(3):659–669. doi: 10.1016/0092-8674(80)90312-8. [DOI] [PubMed] [Google Scholar]
  9. Iatrou K., Tsitilou S. G., Kafatos F. C. DNA sequence transfer between two high-cysteine chorion gene families in the silkmoth Bombyx mori. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4452–4456. doi: 10.1073/pnas.81.14.4452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Iatrou K., Tsitilou S. G., Kafatos F. C. Developmental classes and homologous families of chorion genes in Bombyx mori. J Mol Biol. 1982 May 25;157(3):417–434. doi: 10.1016/0022-2836(82)90469-7. [DOI] [PubMed] [Google Scholar]
  11. Jeang K. T., Holmgren-Konig M., Khoury G. A baculovirus vector can express intron-containing genes. J Virol. 1987 May;61(5):1761–1764. doi: 10.1128/jvi.61.5.1761-1764.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kafatos F. C., Thireos G., Jones C. W., Tsitilou S. G., Iatrou K. Dot hybridization and hybrid-selected translation: methods for determining nucleic acid concentrations and sequence homologies. Gene Amplif Anal. 1981;2:537–550. [PubMed] [Google Scholar]
  13. Lanford R. E. Expression of simian virus 40 T antigen in insect cells using a baculovirus expression vector. Virology. 1988 Nov;167(1):72–81. doi: 10.1016/0042-6822(88)90055-4. [DOI] [PubMed] [Google Scholar]
  14. Maeda S. Expression of foreign genes in insects using baculovirus vectors. Annu Rev Entomol. 1989;34:351–372. doi: 10.1146/annurev.en.34.010189.002031. [DOI] [PubMed] [Google Scholar]
  15. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miller L. K. Baculoviruses as gene expression vectors. Annu Rev Microbiol. 1988;42:177–199. doi: 10.1146/annurev.mi.42.100188.001141. [DOI] [PubMed] [Google Scholar]
  18. Nadel M. R., Kafatos F. C. Specific protein synthesis in cellular differentiation. IV. The chorion proteins of Bombyx mori and their program of synthesis. Dev Biol. 1980 Mar;75(1):26–40. doi: 10.1016/0012-1606(80)90141-4. [DOI] [PubMed] [Google Scholar]
  19. Nadel M. R., Thireos G., Kafatos F. C. Effect of the pleiotropic GrB mutation of Bombyx mori on chorion protein synthesis. Cell. 1980 Jul;20(3):649–658. doi: 10.1016/0092-8674(80)90311-6. [DOI] [PubMed] [Google Scholar]
  20. Rodakis G. C., Kafatos F. C. Origin of evolutionary novelty in proteins: how a high-cysteine chorion protein has evolved. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3551–3555. doi: 10.1073/pnas.79.11.3551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Skeiky Y. A., Iatrou K. Transcriptional behavior of silkmoth chorion genes in vivo and in injected Xenopus laevis oocytes. J Biol Chem. 1987 May 15;262(14):6628–6636. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES