Abstract
As polar surfaces in solvent are brought together, they experience a large repulsive interaction, termed the solvation pressure. The solvation pressure between rough surfaces, such as lipid bilayers, has been shown previously to decay exponentially with distance between surfaces. In this paper, we compare measured values of the solvation pressure between bilayers and the dipole potential for monolayers in equilibrium with bilayers. For a variety of polar solvents and lipid phases, we find a correlation between the measured solvation pressures and dipole potentials. Analysis of the data indicates that the magnitude of the solvation pressure is proportional to the square of the dipole potential. Our experiments also show that the oriented dipoles in the lipid head-group region, including those of both the lipid and solvent molecules, contribute to the dipole potential. We argue that (i) the field produced by these interfacial dipoles polarizes the interbilayer solvent molecules giving rise to the solvation pressure and (ii) both the solvation pressure and the dipole potential decay exponentially with distance from the bilayer surface, with a decay constant that depends on the packing density of the interbilayer solvent molecules (1-2 A in water). These results may have importance in cell adhesion, adsorption of proteins to membranes, characteristics of channel permeability, and the interpretation of electrokinetic experiments.
Full text
PDF![9263](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/298474/1dbfd5eeb6a1/pnas00290-0221.png)
![9264](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/298474/13bc9ac3de91/pnas00290-0222.png)
![9265](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/298474/afc8debd4952/pnas00290-0223.png)
![9266](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/298474/85cba196da3a/pnas00290-0224.png)
![9267](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/298474/1bc5393ffd9d/pnas00290-0225.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen O. S., Feldberg S., Nakadomari H., Levy S., McLaughlin S. Electrostatic interactions among hydrophobic ions in lipid bilayer membranes. Biophys J. 1978 Jan;21(1):35–70. doi: 10.1016/S0006-3495(78)85507-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersen O. S. Ion movement through gramicidin A channels. Studies on the diffusion-controlled association step. Biophys J. 1983 Feb;41(2):147–165. doi: 10.1016/S0006-3495(83)84416-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bechinger B., Macdonald P. M., Seelig J. Deuterium NMR studies of the interactions of polyhydroxyl compounds and of glycolipids with lipid model membranes. Biochim Biophys Acta. 1988 Aug 18;943(2):381–385. doi: 10.1016/0005-2736(88)90572-x. [DOI] [PubMed] [Google Scholar]
- Cadenhead D. A., Bean K. E. Selected lipid monolayers on aqueous-glycerol and aqueous-urea substrates. Biochim Biophys Acta. 1972 Dec 1;290(1):43–50. doi: 10.1016/0005-2736(72)90050-8. [DOI] [PubMed] [Google Scholar]
- Cadenhead D. A., Demchak R. J. Observations and implications of glycerol-monomolecular film interactions. Biochim Biophys Acta. 1969 Jun 10;176(4):849–857. doi: 10.1016/0005-2760(69)90266-5. [DOI] [PubMed] [Google Scholar]
- Cevc G., Marsh D. Hydration of noncharged lipid bilayer membranes. Theory and experiments with phosphatidylethanolamines. Biophys J. 1985 Jan;47(1):21–31. doi: 10.1016/S0006-3495(85)83872-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper K. E., Gates P. Y., Eisenberg R. S. Diffusion theory and discrete rate constants in ion permeation. J Membr Biol. 1988 Dec;106(2):95–105. doi: 10.1007/BF01871391. [DOI] [PubMed] [Google Scholar]
- Eisenberg M., Gresalfi T., Riccio T., McLaughlin S. Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. Biochemistry. 1979 Nov 13;18(23):5213–5223. doi: 10.1021/bi00590a028. [DOI] [PubMed] [Google Scholar]
- Ellena J. F., Dominey R. N., Archer S. J., Xu Z. C., Cafiso D. S. Localization of hydrophobic ions in phospholipid bilayers using 1H nuclear Overhauser effect spectroscopy. Biochemistry. 1987 Jul 14;26(14):4584–4592. doi: 10.1021/bi00388a062. [DOI] [PubMed] [Google Scholar]
- Flewelling R. F., Hubbell W. L. The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophys J. 1986 Feb;49(2):541–552. doi: 10.1016/S0006-3495(86)83664-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haydon D. A., Hladky S. B. Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Q Rev Biophys. 1972 May;5(2):187–282. doi: 10.1017/s0033583500000883. [DOI] [PubMed] [Google Scholar]
- Kasianowicz J., Benz R., McLaughlin S. The kinetic mechanism by which CCCP (carbonyl cyanide m-chlorophenylhydrazone) transports protons across membranes. J Membr Biol. 1984;82(2):179–190. doi: 10.1007/BF01868942. [DOI] [PubMed] [Google Scholar]
- Latorre R., Hall J. E. Dipole potential measurements in asymmetric membranes. Nature. 1976 Nov 25;264(5584):361–363. doi: 10.1038/264361a0. [DOI] [PubMed] [Google Scholar]
- LeNeveu D. M., Rand R. P. Measurement and modification of forces between lecithin bilayers. Biophys J. 1977 May;18(2):209–230. doi: 10.1016/S0006-3495(77)85608-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacDonald R. C., Simon S. A. Lipid monolayer states and their relationships to bilayers. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4089–4093. doi: 10.1073/pnas.84.12.4089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macdonald P. M., Seelig J. Calcium binding to mixed cardiolipin-phosphatidylcholine bilayers as studied by deuterium nuclear magnetic resonance. Biochemistry. 1987 Sep 22;26(19):6292–6298. doi: 10.1021/bi00393a050. [DOI] [PubMed] [Google Scholar]
- Marra J., Israelachvili J. Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions. Biochemistry. 1985 Aug 13;24(17):4608–4618. doi: 10.1021/bi00338a020. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J., Magid A. D., Simon S. A. Cholesterol modifies the short-range repulsive interactions between phosphatidylcholine membranes. Biochemistry. 1989 Jan 10;28(1):17–25. doi: 10.1021/bi00427a004. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J., Magid A. D., Simon S. A. Range of the solvation pressure between lipid membranes: dependence on the packing density of solvent molecules. Biochemistry. 1989 Sep 19;28(19):7904–7912. doi: 10.1021/bi00445a053. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J., Magid A. D., Simon S. A. Repulsive interactions between uncharged bilayers. Hydration and fluctuation pressures for monoglycerides. Biophys J. 1989 May;55(5):897–904. doi: 10.1016/S0006-3495(89)82888-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntosh T. J., Magid A. D., Simon S. A. Steric repulsion between phosphatidylcholine bilayers. Biochemistry. 1987 Nov 17;26(23):7325–7332. doi: 10.1021/bi00397a020. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J., Simon S. A. Area per molecule and distribution of water in fully hydrated dilauroylphosphatidylethanolamine bilayers. Biochemistry. 1986 Aug 26;25(17):4948–4952. doi: 10.1021/bi00365a034. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J., Simon S. A. Hydration force and bilayer deformation: a reevaluation. Biochemistry. 1986 Jul 15;25(14):4058–4066. doi: 10.1021/bi00362a011. [DOI] [PubMed] [Google Scholar]
- Paltauf F., Hauser H., Phillips M. C. Monolayer characteristics of some 1,2-diacyl, I-alkyl-2-acyl and 1,2-dialkyl phospholipids at the air-water interface. Biochim Biophys Acta. 1971 Dec 3;249(2):539–547. doi: 10.1016/0005-2736(71)90129-5. [DOI] [PubMed] [Google Scholar]
- Parsegian V. A., Fuller N., Rand R. P. Measured work of deformation and repulsion of lecithin bilayers. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2750–2754. doi: 10.1073/pnas.76.6.2750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rand R. P., Fuller N., Parsegian V. A., Rau D. C. Variation in hydration forces between neutral phospholipid bilayers: evidence for hydration attraction. Biochemistry. 1988 Oct 4;27(20):7711–7722. doi: 10.1021/bi00420a021. [DOI] [PubMed] [Google Scholar]
- Seddon J. M., Harlos K., Marsh D. Metastability and polymorphism in the gel and fluid bilayer phases of dilauroylphosphatidylethanolamine. Two crystalline forms in excess water. J Biol Chem. 1983 Mar 25;258(6):3850–3854. [PubMed] [Google Scholar]
- Strichartz G. R., Oxford G. S., Ramon F. Effects of the dipolar form of phloretin on potassium conductance in squid giant axons. Biophys J. 1980 Aug;31(2):229–246. doi: 10.1016/S0006-3495(80)85053-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tatulian S. A. Fluidity-dependence of membrane adhesiveness can be explained by thermotropic shifts in surface potential. Biochim Biophys Acta. 1987 Jul 10;901(1):161–165. doi: 10.1016/0005-2736(87)90268-9. [DOI] [PubMed] [Google Scholar]