Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Dec;86(23):9268–9272. doi: 10.1073/pnas.86.23.9268

Modeling antibody hypervariable loops: a combined algorithm.

A C Martin 1, J C Cheetham 1, A R Rees 1
PMCID: PMC298475  PMID: 2594766

Abstract

To be of any value, a predicted model of an antibody combining site should have an accuracy approaching that of antibody structures determined by x-ray crystallography (1.6-2.7 A). A number of modeling protocols have been proposed, which fall into two main categories--those that adopt a knowledge-based approach and those that attempt to construct the hypervariable loop regions of the antibody ab initio. Here we present a combined algorithm requiring no arbitrary decisions on the part of the user, which has been successfully applied to the modeling of the individual loops in two systems: the anti-lysozyme antibody HyHel-5, the crystal structure of which is as a complex with lysozyme [Sheriff, S., Silverton, E. W., Padlan, E. A., Cohen, G. H., Smith-Gill, S. J., Finzel, B. C. & Davies, D. R. (1987) Proc. Natl. Acad. Sci. USA 84, 8075-8079], and the free antigen binding fragment (Fab) of the anti-lysozyme peptide antibody, Gloop2. This protocol may be used with a high degree of confidence to model single-loop replacements, insertions, deletions, and side-chain replacements. In addition, it may be used in conjunction with other modeling protocols as a method by which to model particular loops whose conformations are predicted poorly by these methods.

Full text

PDF
9268

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aqvist J., van Gunsteren W. F., Leijonmarck M., Tapia O. A molecular dynamics study of the C-terminal fragment of the L7/L12 ribosomal protein. Secondary structure motion in a 150 picosecond trajectory. J Mol Biol. 1985 Jun 5;183(3):461–477. doi: 10.1016/0022-2836(85)90014-2. [DOI] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Bock K., Meldal M., Bundle D. R., Iversen T., Garegg P. J., Norberg T., Lindberg A. A., Svenson S. B. The conformation of Salmonella O-antigenic polysaccharide chains of serogroups A, B, and D1 predicted by semi-empirical, Hard-Sphere (HSEA) calculations. Carbohydr Res. 1984 Jul 15;130:23–34. doi: 10.1016/0008-6215(84)85267-2. [DOI] [PubMed] [Google Scholar]
  4. Bruccoleri R. E., Haber E., Novotný J. Structure of antibody hypervariable loops reproduced by a conformational search algorithm. Nature. 1988 Oct 6;335(6190):564–568. doi: 10.1038/335564a0. [DOI] [PubMed] [Google Scholar]
  5. Bruccoleri R. E., Karplus M. Prediction of the folding of short polypeptide segments by uniform conformational sampling. Biopolymers. 1987 Jan;26(1):137–168. doi: 10.1002/bip.360260114. [DOI] [PubMed] [Google Scholar]
  6. Chothia C., Lesk A. M. Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol. 1987 Aug 20;196(4):901–917. doi: 10.1016/0022-2836(87)90412-8. [DOI] [PubMed] [Google Scholar]
  7. Chothia C., Lesk A. M., Levitt M., Amit A. G., Mariuzza R. A., Phillips S. E., Poljak R. J. The predicted structure of immunoglobulin D1.3 and its comparison with the crystal structure. Science. 1986 Aug 15;233(4765):755–758. doi: 10.1126/science.3090684. [DOI] [PubMed] [Google Scholar]
  8. Darsley M. J., Rees A. R. Nucleotide sequences of five anti-lysozyme monoclonal antibodies. EMBO J. 1985 Feb;4(2):393–398. doi: 10.1002/j.1460-2075.1985.tb03641.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fine R. M., Wang H., Shenkin P. S., Yarmush D. L., Levinthal C. Predicting antibody hypervariable loop conformations. II: Minimization and molecular dynamics studies of MCPC603 from many randomly generated loop conformations. Proteins. 1986 Dec;1(4):342–362. doi: 10.1002/prot.340010408. [DOI] [PubMed] [Google Scholar]
  10. Hartman A. B., Mallett C. P., Sheriff S., Smith-Gill S. J. Unusual joining sites in the H and L chains of an anti-lysozyme antibody. J Immunol. 1988 Aug 1;141(3):932–936. [PubMed] [Google Scholar]
  11. Jones T. A., Thirup S. Using known substructures in protein model building and crystallography. EMBO J. 1986 Apr;5(4):819–822. doi: 10.1002/j.1460-2075.1986.tb04287.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  13. Lerner R. A., Benkovic S. J. Principles of antibody catalysis. Bioessays. 1988 Oct;9(4):107–112. doi: 10.1002/bies.950090402. [DOI] [PubMed] [Google Scholar]
  14. MacKerell A. D., Jr, Nilsson L., Rigler R., Saenger W. Molecular dynamics simulations of ribonuclease T1: analysis of the effect of solvent on the structure, fluctuations, and active site of the free enzyme. Biochemistry. 1988 Jun 14;27(12):4547–4556. doi: 10.1021/bi00412a049. [DOI] [PubMed] [Google Scholar]
  15. Mainhart C. R., Potter M., Feldmann R. J. A refined model for the variable domains (Fv) of the J539 beta(1,6)-D-galactan-binding immunoglobulin. Mol Immunol. 1984 Jun;21(6):469–478. doi: 10.1016/0161-5890(84)90062-2. [DOI] [PubMed] [Google Scholar]
  16. Mao B., Pear M. R., McCammon J. A., Quiocho F. A. Hinge-bending in L-arabinose-binding protein. The "Venus's-flytrap" model. J Biol Chem. 1982 Feb 10;257(3):1131–1133. [PubMed] [Google Scholar]
  17. McCammon J. A., Wolynes P. G., Karplus M. Picosecond dynamics of tyrosine side chains in proteins. Biochemistry. 1979 Mar 20;18(6):927–942. doi: 10.1021/bi00573a001. [DOI] [PubMed] [Google Scholar]
  18. Moult J., James M. N. An algorithm for determining the conformation of polypeptide segments in proteins by systematic search. Proteins. 1986 Oct;1(2):146–163. doi: 10.1002/prot.340010207. [DOI] [PubMed] [Google Scholar]
  19. Novotný J., Rashin A. A., Bruccoleri R. E. Criteria that discriminate between native proteins and incorrectly folded models. Proteins. 1988;4(1):19–30. doi: 10.1002/prot.340040105. [DOI] [PubMed] [Google Scholar]
  20. Riechmann L., Clark M., Waldmann H., Winter G. Reshaping human antibodies for therapy. Nature. 1988 Mar 24;332(6162):323–327. doi: 10.1038/332323a0. [DOI] [PubMed] [Google Scholar]
  21. Roberts S., Cheetham J. C., Rees A. R. Generation of an antibody with enhanced affinity and specificity for its antigen by protein engineering. Nature. 1987 Aug 20;328(6132):731–734. doi: 10.1038/328731a0. [DOI] [PubMed] [Google Scholar]
  22. Sheriff S., Silverton E. W., Padlan E. A., Cohen G. H., Smith-Gill S. J., Finzel B. C., Davies D. R. Three-dimensional structure of an antibody-antigen complex. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8075–8079. doi: 10.1073/pnas.84.22.8075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith-Gill S. J., Mainhart C., Lavoie T. B., Feldmann R. J., Drohan W., Brooks B. R. A three-dimensional model of an anti-lysozyme antibody. J Mol Biol. 1987 Apr 20;194(4):713–724. doi: 10.1016/0022-2836(87)90249-x. [DOI] [PubMed] [Google Scholar]
  24. Suh S. W., Bhat T. N., Navia M. A., Cohen G. H., Rao D. N., Rudikoff S., Davies D. R. The galactan-binding immunoglobulin Fab J539: an X-ray diffraction study at 2.6-A resolution. Proteins. 1986 Sep;1(1):74–80. doi: 10.1002/prot.340010112. [DOI] [PubMed] [Google Scholar]
  25. Wu T. T., Kabat E. A. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med. 1970 Aug 1;132(2):211–250. doi: 10.1084/jem.132.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. de la Paz P., Sutton B. J., Darsley M. J., Rees A. R. Modelling of the combining sites of three anti-lysozyme monoclonal antibodies and of the complex between one of the antibodies and its epitope. EMBO J. 1986 Feb;5(2):415–425. doi: 10.1002/j.1460-2075.1986.tb04227.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES