Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Dec;86(23):9294–9298. doi: 10.1073/pnas.86.23.9294

The insulin receptor as a transmitter of a mitogenic signal in Chinese hamster ovary CHO-K1 cells.

M Mamounas 1, D Gervin 1, E Englesberg 1
PMCID: PMC298481  PMID: 2687878

Abstract

Insulin is the only hormone required for continued growth of Chinese hamster ovary CHO-K1 cells in the defined medium M-F12. When CHO-K1 cells are incubated in M-F12 without insulin for 48-72 hr, the cells accumulate in G1. In response to physiological concentrations of insulin an 18-fold increase in rate of DNA synthesis occurs due to cells entering S phase after an 8- to 10-hr lag; cell division begins after 24 hr. The inhibitory effect of actinomycin D and 5,6-dichlorobenzimidazole riboside indicates that RNA synthesis is required for progression to S phase. CHO-K1 cells possess insulin receptors, and the insulin effect results from insulin binding to its own receptor: (i) Binding occurs at physiological insulin concentrations with a half-maximal stimulation at approximately 14 ng/ml. (ii) At insulin concentrations used, insulin-like growth factor I and II (IGF-I and IGF-II) have little or no effect. (iii) Scatchard analysis of 125I-labeled insulin binding shows the curvilinear response typical of insulin. (iv) The Kd for the so-called high-affinity binding site and the Ke are characteristic of the insulin receptor. (v) At the minimal insulin concentrations that stimulate growth, IGF-I and IGF-II compete poorly with insulin for insulin binding, insulin competes poorly with IGF-I for IGF-I binding, and affinity labeling with 125I-labeled insulin identifies a polypeptide (Mr = 125,000) typical of the alpha subunit of the insulin receptor.

Full text

PDF
9294

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Campisi J., Medrano E. E., Morreo G., Pardee A. B. Restriction point control of cell growth by a labile protein: evidence for increased stability in transformed cells. Proc Natl Acad Sci U S A. 1982 Jan;79(2):436–440. doi: 10.1073/pnas.79.2.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Campisi J., Pardee A. B. Post-transcriptional control of the onset of DNA synthesis by an insulin-like growth factor. Mol Cell Biol. 1984 Sep;4(9):1807–1814. doi: 10.1128/mcb.4.9.1807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clark S., Cheng D. J., Hsuan J. J., Haley J. D., Waterfield M. D. Loss of three major auto phosphorylation sites in the EGF receptor does not block the mitogenic action of EGF. J Cell Physiol. 1988 Mar;134(3):421–428. doi: 10.1002/jcp.1041340313. [DOI] [PubMed] [Google Scholar]
  4. Conover C. A., Hintz R. L., Rosenfeld R. G. Comparative effects of somatomedin C and insulin on the metabolism and growth of cultured human fibroblasts. J Cell Physiol. 1985 Jan;122(1):133–141. doi: 10.1002/jcp.1041220120. [DOI] [PubMed] [Google Scholar]
  5. De Meyts P., Roth J. Cooperativity in ligand binding: a new graphic analysis. Biochem Biophys Res Commun. 1975 Oct 27;66(4):1118–1126. doi: 10.1016/0006-291x(75)90473-8. [DOI] [PubMed] [Google Scholar]
  6. Escobedo J. A., Keating M. T., Ives H. E., Williams L. T. Platelet-derived growth factor receptors expressed by cDNA transfection couple to a diverse group of cellular responses associated with cell proliferation. J Biol Chem. 1988 Jan 25;263(3):1482–1487. [PubMed] [Google Scholar]
  7. Flier J. S., Usher P., Moses A. C. Monoclonal antibody to the type I insulin-like growth factor (IGF-I) receptor blocks IGF-I receptor-mediated DNA synthesis: clarification of the mitogenic mechanisms of IGF-I and insulin in human skin fibroblasts. Proc Natl Acad Sci U S A. 1986 Feb;83(3):664–668. doi: 10.1073/pnas.83.3.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Furlanetto R. W., DiCarlo J. N., Wisehart C. The type II insulin-like growth factor receptor does not mediate deoxyribonucleic acid synthesis in human fibroblasts. J Clin Endocrinol Metab. 1987 Jun;64(6):1142–1149. doi: 10.1210/jcem-64-6-1142. [DOI] [PubMed] [Google Scholar]
  9. Grigorescu F., White M. F., Kahn C. R. Insulin binding and insulin-dependent phosphorylation of the insulin receptor solubilized from human erythrocytes. J Biol Chem. 1983 Nov 25;258(22):13708–13716. [PubMed] [Google Scholar]
  10. Kahn C. R., Baird K. L., Flier J. S., Grunfeld C., Harmon J. T., Harrison L. C., Karlsson F. A., Kasuga M., King G. L., Lang U. C. Insulin receptors, receptor antibodies, and the mechanism of insulin action. Recent Prog Horm Res. 1981;37:477–538. doi: 10.1016/b978-0-12-571137-1.50015-3. [DOI] [PubMed] [Google Scholar]
  11. King G. L., Kahn C. R., Rechler M. M., Nissley S. P. Direct demonstration of separate receptors for growth and metabolic activities of insulin and multiplication-stimulating activity (an insulinlike growth factor) using antibodies to the insulin receptor. J Clin Invest. 1980 Jul;66(1):130–140. doi: 10.1172/JCI109826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Knight E., Jr, Fahey D., Blomstrom D. C. Interferon-beta enhances the synthesis of a 20,000-dalton membrane protein: a correlation with the cessation of cell growth. J Interferon Res. 1985 Spring;5(2):305–313. doi: 10.1089/jir.1985.5.305. [DOI] [PubMed] [Google Scholar]
  13. Koontz J. W., Iwahashi M. Insulin as a potent, specific growth factor in a rat hepatoma cell line. Science. 1981 Feb 27;211(4485):947–949. doi: 10.1126/science.7008195. [DOI] [PubMed] [Google Scholar]
  14. Krett N. L., Heaton J. H., Gelehrter T. D. Mediation of insulin-like growth factor actions by the insulin receptor in H-35 rat hepatoma cells. Endocrinology. 1987 Jan;120(1):401–408. doi: 10.1210/endo-120-1-401. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Massagué J., Blinderman L. A., Czech M. P. The high affinity insulin receptor mediates growth stimulation in rat hepatoma cells. J Biol Chem. 1982 Dec 10;257(23):13958–13963. [PubMed] [Google Scholar]
  17. Mendiaz E., Mamounas M., Moffett J., Englesberg E. A defined medium for and the effect of insulin on the growth, amino acid transport, and morphology of Chinese hamster ovary cells, CHO-K1 (CCL 61) and the isolation of insulin "independent" mutants. In Vitro Cell Dev Biol. 1986 Feb;22(2):66–74. doi: 10.1007/BF02623535. [DOI] [PubMed] [Google Scholar]
  18. Nagarajan L., Anderson W. B. Insulin promotes the growth of F9 embryonal carcinoma cells apparently by acting through its own receptor. Biochem Biophys Res Commun. 1982 Jun 15;106(3):974–980. doi: 10.1016/0006-291x(82)91806-x. [DOI] [PubMed] [Google Scholar]
  19. Pilch P. F., Czech M. P. Interaction of cross-linking agents with the insulin effector system of isolated fat cells. Covalent linkage of 125I-insulin to a plasma membrane receptor protein of 140,000 daltons. J Biol Chem. 1979 May 10;254(9):3375–3381. [PubMed] [Google Scholar]
  20. Price P. J., Gregory E. A. Relationship between in vitro growth promotion and biophysical and biochemical properties of the serum supplement. In Vitro. 1982 Jun;18(6):576–584. doi: 10.1007/BF02810081. [DOI] [PubMed] [Google Scholar]
  21. Rechler M. M., Podskalny J. M., Goldfine I. D., Wells C. A. DNA synthesis in human fibroblasts: stimulation by insulin and by nonsuppressible insulin-like activity (NSILA-S). J Clin Endocrinol Metab. 1974 Sep;39(3):512–521. doi: 10.1210/jcem-39-3-512. [DOI] [PubMed] [Google Scholar]
  22. Rizzino A., Rizzino H., Sato G. Defined media and the determination of nutritional and hormonal requirements of mammalian cells in culture. Nutr Rev. 1979 Dec;37(12):369–378. doi: 10.1111/j.1753-4887.1979.tb06646.x. [DOI] [PubMed] [Google Scholar]
  23. Rosen O. M. After insulin binds. Science. 1987 Sep 18;237(4821):1452–1458. doi: 10.1126/science.2442814. [DOI] [PubMed] [Google Scholar]
  24. Roth R. A. Structure of the receptor for insulin-like growth factor II: the puzzle amplified. Science. 1988 Mar 11;239(4845):1269–1271. doi: 10.1126/science.2964085. [DOI] [PubMed] [Google Scholar]
  25. Van Wyk J. J., Graves D. C., Casella S. J., Jacobs S. Evidence from monoclonal antibody studies that insulin stimulates deoxyribonucleic acid synthesis through the type I somatomedin receptor. J Clin Endocrinol Metab. 1985 Oct;61(4):639–643. doi: 10.1210/jcem-61-4-639. [DOI] [PubMed] [Google Scholar]
  26. de Meyts P., Roth J., Neville D. M., Jr, Gavin J. R., 3rd, Lesniak M. A. Insulin interactions with its receptors: experimental evidence for negative cooperativity. Biochem Biophys Res Commun. 1973 Nov 1;55(1):154–161. doi: 10.1016/s0006-291x(73)80072-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES