Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Dec;86(23):9621–9625. doi: 10.1073/pnas.86.23.9621

Role of the hypothalamus in the control of atrial natriuretic peptide release.

S Baldissera 1, J W Menani 1, L F dos Santos 1, A L Favaretto 1, J Gutkowska 1, M Q Turrin 1, S M McCann 1, J Antunes-Rodrigues 1
PMCID: PMC298550  PMID: 2531900

Abstract

Stimulation of the region antero-ventral to the third cerebral ventricle (AV3V) by a cholinergic drug, carbachol, and lesions of the AV3V have been demonstrated in previous studies to either augment or decrease sodium excretion, respectively. Atrial natriuretic peptide (ANP) dramatically increases renal sodium excretion and has been localized to brain areas previously shown to be involved in control of sodium excretion. Consequently, to evaluate a possible role of brain ANP in evoking the changes in renal sodium excretion that follow stimulations or lesions of the AV3V, we determined the effect of injection of carbachol into the AV3V of rats on the concentration of plasma ANP and its content in several neural tissues, the pituitary gland, lungs, and atria. Conversely, the effect of lesions in the AV3V on plasma ANP and the content of the polypeptide in the various organs was determined. Injection of carbachol into the AV3V produced the expected natriuresis, which was accompanied within 20 min by a dramatic rise in the plasma ANP concentration and a rise in ANP content in the medial basal hypothalamus, the neurohypophysis, and particularly the anterior hypophysis but without alterations in the content of ANP in the lungs or the right or left atrium. Conversely, there was a dramatic decline in plasma ANP at both 24 and 120 hr after the AV3V lesions had been placed. This was accompanied by a slight decline in the content of the peptide in the lungs. There was no change in its content in the right atrium at 24 hr after lesions, but there was a significant increase at 120 hr. There was a small decline in the content in the left atrium at 24 hr, followed by a rebound to slightly elevated levels at 120 hr. These small changes contrasted sharply with the dramatic decline in content of the peptide in the medial basal hypothalamus, median eminence, neurohypophysis, choroid plexus, anterior hypophysis, and olfactory bulb. These declines persisted or became greater at 120 hr; except in the olfactory bulb in which the decline was no longer significant. The dramatic increase in plasma ANP after carbachol stimulation of the AV3V that was accompanied by marked elevations in content of the peptide in basal hypothalamus and neuro- and adenohypophysis suggests that the natriuresis resulting from this stimulation is brought about at least in part by release of ANP from the brain. Conversely, the dramatic decline in plasma ANP after AV3V lesions was accompanied by very dramatic declines in content of ANP in these same structures, which suggests that the previously shown decrease in sodium excretion obtained after these lesions may be at least in part due to a decrease in release of ANP from the brain. In view of the much larger quantities of the peptide stored in the atria, it is still possible that changes in atrial release may contribute to the alterations in plasma ANP observed after stimulation or ablation of the AV3V region; however, these results suggest that the dramatic changes in plasma ANP that followed these manipulations may be due to altered release of the peptide from brain structures as well as the atria and lungs.

Full text

PDF
9621

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson B., Jobin M., Olsson K. Stimulation of urinary salt excretion following injections of hypertonic NaCl-solution into the 3rd brain ventricle. Acta Physiol Scand. 1966 May;67(1):127–128. doi: 10.1111/j.1748-1716.1966.tb03293.x. [DOI] [PubMed] [Google Scholar]
  2. Andersson B. Regulation of body fluids. Annu Rev Physiol. 1977;39:185–200. doi: 10.1146/annurev.ph.39.030177.001153. [DOI] [PubMed] [Google Scholar]
  3. Antunes-Rodrigues J., McCann S. M., Rogers L. C., Samson W. K. Atrial natriuretic factor inhibits dehydration- and angiotensin II-induced water intake in the conscious, unrestrained rat. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8720–8723. doi: 10.1073/pnas.82.24.8720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Antunes-Rodrigues J., McCann S. M., Samson W. K. Central administration of atrial natriuretic factor inhibits saline preference in the rat. Endocrinology. 1986 Apr;118(4):1726–1728. doi: 10.1210/endo-118-4-1726. [DOI] [PubMed] [Google Scholar]
  5. Antunes-Rodrigues J., McCann S. M. Water, sodium chloride, and food intake induced by injections of cholinergic and adrenergic drugs into the third ventricle of the rat brain. Proc Soc Exp Biol Med. 1970 Apr;133(4):1464–1470. doi: 10.3181/00379727-133-34713. [DOI] [PubMed] [Google Scholar]
  6. Bealer S. L., Phillips M. I., Johnson A. K., Schmid P. G. Anteroventral third ventricle lesions reduce antidiuretic responses to angiotensin II. Am J Physiol. 1979 Jun;236(6):E610–E615. doi: 10.1152/ajpendo.1979.236.6.E610. [DOI] [PubMed] [Google Scholar]
  7. Camargo L. A., Saad W. A., Netto C. R., Gentil C. G., Antunes-Rodrigues J., Covian M. R. Effects of catecholamines injected into the septal area of the rat brain on natriuresis, kaliuresis and diuresis. Can J Physiol Pharmacol. 1976 Jun;54(3):219–228. doi: 10.1139/y76-034. [DOI] [PubMed] [Google Scholar]
  8. Camargo L. A., Saad W. A., Silva Neto C. R., Antunes-Rodrigues J., Covian M. R. Effect of beta-adrenergic stimulation of the septal area on renal excretion of electrolytes and water in the rat. Pharmacol Biochem Behav. 1979 Aug;11(2):141–144. doi: 10.1016/0091-3057(79)90004-2. [DOI] [PubMed] [Google Scholar]
  9. Dorn J., Antunes-Rodrigues J., McCann S. M. Natriuresis in the rat following intraventricular carbachol. Am J Physiol. 1970 Nov;219(5):1292–1298. doi: 10.1152/ajplegacy.1970.219.5.1292. [DOI] [PubMed] [Google Scholar]
  10. Dorn J., Porter J. C. Diencephalic involvement in sodium excretion in the rat. Endocrinology. 1970 May;86(5):1112–1117. doi: 10.1210/endo-86-5-1112. [DOI] [PubMed] [Google Scholar]
  11. Franci C. R., Antunes-Rodrigues J., Silva-Netto C. R., Camargo L. A., Saad W. A. Identification of pathways involved in the natriuretic, kaliuretic and diuretic responses induced by cholinergic stimulation of the medial septal area (MSA). Physiol Behav. 1983 Jan;30(1):65–71. doi: 10.1016/0031-9384(83)90039-2. [DOI] [PubMed] [Google Scholar]
  12. Franci C. R., Silva-Netto C. R., Saad W. A., Camargo L. A., Antunes-Rodrigues J. Interaction between the lateral hypothalamic area (LHA) and the medial septal area (MSA) in the control of sodium and potassium excretion in rats. Physiol Behav. 1980 Dec;25(6):801–806. doi: 10.1016/0031-9384(80)90297-8. [DOI] [PubMed] [Google Scholar]
  13. Fregoneze J. B., Gutkowska J., St-Pierre S., Antunes-Rodrigues J. Effect of brain natriuretic peptide on dehydration- or angiotensin II-induced water intake in rats. Braz J Med Biol Res. 1989;22(6):765–768. [PubMed] [Google Scholar]
  14. Goodfriend T. L., Elliott M. E., Atlas S. A. Actions of synthetic atrial natriuretic factor on bovine adrenal glomerulosa. Life Sci. 1984 Oct 15;35(16):1675–1682. doi: 10.1016/0024-3205(84)90179-6. [DOI] [PubMed] [Google Scholar]
  15. Gutkowska J., Horký K., Thibault G., Januszewicz P., Cantin M., Genest J. Atrial natriuretic factor is a circulating hormone. Biochem Biophys Res Commun. 1984 Nov 30;125(1):315–323. doi: 10.1016/s0006-291x(84)80370-8. [DOI] [PubMed] [Google Scholar]
  16. Gutkowska J., Thibault G., Januszewicz P., Cantin M., Genest J. Direct radioimmunoassay of atrial natriuretic factor. Biochem Biophys Res Commun. 1984 Jul 31;122(2):593–601. doi: 10.1016/s0006-291x(84)80074-1. [DOI] [PubMed] [Google Scholar]
  17. McKinley M. J., Denton D. A., Coghlan J. P., Harvey R. B., McDougall J. G., Rundgren M., Scoggins B. A., Weisinger R. S. Cerebral osmoregulation of renal sodium excretion--a response analogous to thirst and vasopressin release. Can J Physiol Pharmacol. 1987 Aug;65(8):1724–1729. doi: 10.1139/y87-271. [DOI] [PubMed] [Google Scholar]
  18. Morris M., McCann S. M., Orias R. Evidence for hormonal participation in the natriuretic and kaliuretic responses to intraventricular hypertonic saline and norepinephrine. Proc Soc Exp Biol Med. 1976 May;152(1):95–98. doi: 10.3181/00379727-152-39336. [DOI] [PubMed] [Google Scholar]
  19. Phillips M. I. Functions of angiotensin in the central nervous system. Annu Rev Physiol. 1987;49:413–435. doi: 10.1146/annurev.ph.49.030187.002213. [DOI] [PubMed] [Google Scholar]
  20. Quirion R., Dalpé M., De Lean A., Gutkowska J., Cantin M., Genest J. Atrial natriuretic factor (ANF) binding sites in brain and related structures. Peptides. 1984 Nov-Dec;5(6):1167–1172. doi: 10.1016/0196-9781(84)90183-9. [DOI] [PubMed] [Google Scholar]
  21. Ramsay D. J., Thrasher T. N., Keil L. C. The organum vasculosum laminae terminalis: a critical area for osmoreception. Prog Brain Res. 1983;60:91–98. doi: 10.1016/S0079-6123(08)64377-0. [DOI] [PubMed] [Google Scholar]
  22. Saad W. A., Camargo L. A., Graeff F. G., Silva-Neto C. R., Antunes-Rodrigues J., Covian M. R. The role of central muscarinic and nicotinic receptors in the regulation of sodium and potassium renal excretion. Gen Pharmacol. 1976 Aug;7(2-3):145–148. doi: 10.1016/0306-3623(76)90051-3. [DOI] [PubMed] [Google Scholar]
  23. Saad W. A., Camargo L. A., Netto C. R., Gentil C. G., Antunes-Rodrigues J., Covian M. R. Natriuresis, kaliuresis and diuresis in the rat following microinjections of carbachol into the septal area. Pharmacol Biochem Behav. 1975 Nov-Dec;3(6):985–992. doi: 10.1016/0091-3057(75)90006-4. [DOI] [PubMed] [Google Scholar]
  24. Samson W. K. Atrial natriuretic factor inhibits dehydration and hemorrhage-induced vasopressin release. Neuroendocrinology. 1985 Mar;40(3):277–279. doi: 10.1159/000124085. [DOI] [PubMed] [Google Scholar]
  25. Samson W. K. Dehydration-induced alterations in rat brain vasopressin and atrial natriuretic factor immunoreactivity. Endocrinology. 1985 Sep;117(3):1279–1281. doi: 10.1210/endo-117-3-1279. [DOI] [PubMed] [Google Scholar]
  26. Sudoh T., Kangawa K., Minamino N., Matsuo H. A new natriuretic peptide in porcine brain. Nature. 1988 Mar 3;332(6159):78–81. doi: 10.1038/332078a0. [DOI] [PubMed] [Google Scholar]
  27. Zamir N., Skofitsch G., Eskay R. L., Jacobowitz D. M. Distribution of immunoreactive atrial natriuretic peptides in the central nervous system of the rat. Brain Res. 1986 Feb 12;365(1):105–111. doi: 10.1016/0006-8993(86)90727-4. [DOI] [PubMed] [Google Scholar]
  28. da Rocha M. J., Franci C. R., Antunes-Rodrigues J. Participation of cholinergic and adrenergic synapses of the medial septal area (MSA) in the natriuretic and kaliuretic responses to intraventricular hypertonic saline (NaCl). Physiol Behav. 1985 Jan;34(1):23–28. doi: 10.1016/0031-9384(85)90071-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES