Abstract
Bovine hypothalamus contains a nonpeptidic substance that inhibits purified Na+/K(+)-transporting ATPase [ATP phosphohydrolase (Na+/K(+)-transporting), EC 3.6.1.37] reversibly with high affinity by a mechanism similar to, but not identical to, that of the cardiac glycosides. It possesses some of the characteristics ascribed to a putative endogenous "digitalis-like" compound that has been implicated in the control of renal sodium excretion and the pathogenesis of essential hypertension in man. To determine whether this hypothalamic Na+/K(+)-transporting ATPase inhibitor might have physiologic properties in cardiac tissues, its effects on Na+ pump inhibition, accumulation of cytosolic free calcium, and contractile response were studied in cultured, spontaneously contracting neonatal rat cardiocytes. The hypothalamic factor potently inhibited the Na+ pump in these cells, increased myoplasmic free calcium in a dose-dependent manner, and reversibly enhanced myocyte contractility by up to 40%, comparable in degree to maximal positive inotropic effects caused by the cardiac glycoside ouabain. Comparative studies further indicate that cardiotoxic effects of ouabain in the myocytes may be more complex than simple progressive elevation of intracellular free calcium concentration because at a free calcium concentration in excess of that produced by a toxic dose of ouabain, no toxicity with the hypothalamic Na+/K(+)-transporting ATPase inhibitor occurred.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barry W. H., Biedert S., Miura D. S., Smith T. W. Changes in cellular Na+, K+, and Ca2+ contents, monovalent cation transport rate, and contractile state during washout of cardiac glycosides from cultured chick heart cells. Circ Res. 1981 Jul;49(1):141–149. doi: 10.1161/01.res.49.1.141. [DOI] [PubMed] [Google Scholar]
- Barry W. H., Hasin Y., Smith T. W. Sodium pump inhibition, enhanced calcium influx via sodium-calcium exchange, and positive inotropic response in cultured heart cells. Circ Res. 1985 Feb;56(2):231–241. doi: 10.1161/01.res.56.2.231. [DOI] [PubMed] [Google Scholar]
- Blaustein M. P. Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am J Physiol. 1977 May;232(5):C165–C173. doi: 10.1152/ajpcell.1977.232.5.C165. [DOI] [PubMed] [Google Scholar]
- Cantiello H. F., Chen E., Ray S., Haupert G. T., Jr Na+ pump in renal tubular cells is regulated by endogenous Na+-K+-ATPase inhibitor from hypothalamus. Am J Physiol. 1988 Oct;255(4 Pt 2):F574–F580. doi: 10.1152/ajprenal.1988.255.4.F574. [DOI] [PubMed] [Google Scholar]
- Cantley L. C., Jr, Cantley L. G., Josephson L. A characterization of vanadate interactions with the (Na,K)-ATPase. Mechanistic and regulatory implications. J Biol Chem. 1978 Oct 25;253(20):7361–7368. [PubMed] [Google Scholar]
- Carilli C. T., Berne M., Cantley L. C., Haupert G. T., Jr Hypothalamic factor inhibits the (Na,K)ATPase from the extracellular surface. Mechanism of inhibition. J Biol Chem. 1985 Jan 25;260(2):1027–1031. [PubMed] [Google Scholar]
- Crabos M., Grichois M. L., Guicheney P., Wainer I. W., Cloix J. F. Further biochemical characterization of an Na+ pump inhibitor purified from human urine. Eur J Biochem. 1987 Jan 2;162(1):129–135. doi: 10.1111/j.1432-1033.1987.tb10552.x. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Haber E., Haupert G. T., Jr The search for a hypothalamic Na+,K+-ATPase inhibitor. Hypertension. 1987 Apr;9(4):315–324. doi: 10.1161/01.hyp.9.4.315. [DOI] [PubMed] [Google Scholar]
- Hallaq H., Hasin Y., Fixler R., Eilam Y. Effect of ouabain on the concentration of free cytosolic Ca++ and on contractility in cultured rat cardiac myocytes. J Pharmacol Exp Ther. 1989 Feb;248(2):716–721. [PubMed] [Google Scholar]
- Haupert G. T., Jr, Carilli C. T., Cantley L. C. Hypothalamic sodium-transport inhibitor is a high-affinity reversible inhibitor of Na+-K+-ATPase. Am J Physiol. 1984 Dec;247(6 Pt 2):F919–F924. doi: 10.1152/ajprenal.1984.247.6.F919. [DOI] [PubMed] [Google Scholar]
- Haupert G. T., Jr, Sancho J. M. Sodium transport inhibitor from bovine hypothalamus. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4658–4660. doi: 10.1073/pnas.76.9.4658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heller M., Hallaq H., Panet R. Interactions of cardiac glycosides with cells and membranes. IV. Effects of ouabain and bumetanide on 86Rb+ influx in cultured cardiac myocytes from neonatal rats. Biochim Biophys Acta. 1988 Apr 22;939(3):595–602. doi: 10.1016/0005-2736(88)90107-1. [DOI] [PubMed] [Google Scholar]
- Hook J. B. A positive correlation between natriuresis and inhibition of renal Na-K adenosine triphosphatase by ouabain. Proc Soc Exp Biol Med. 1969 Jul;131(3):731–734. doi: 10.3181/00379727-131-33963. [DOI] [PubMed] [Google Scholar]
- Horwitz B. A. Cellular events underlying catecholamine-induced thermogenesis: cation transport in brown adipocytes. Fed Proc. 1979 Jul;38(8):2170–2176. [PubMed] [Google Scholar]
- Panet R., Fromer I., Atlan H. Differentiation between serum stimulation of ouabain-resistant and sensitive Rb influx in quiescent NIH 3T3 cells. J Membr Biol. 1982;70(2):165–169. doi: 10.1007/BF01870226. [DOI] [PubMed] [Google Scholar]
- Shimoni Y., Gotsman M., Deutsch J., Kachalsky S., Lichtstein D. Endogenous ouabain-like compound increases heart muscle contractility. 1984 Jan 26-Feb 1Nature. 307(5949):369–371. doi: 10.1038/307369a0. [DOI] [PubMed] [Google Scholar]
- Smith T. J., Edelman I. S. The role of sodium transport in thyroid thermogenesis. Fed Proc. 1979 Jul;38(8):2150–2153. [PubMed] [Google Scholar]
- Tamura M., Lam T. T., Inagami T. Isolation and characterization of a specific endogenous Na+,K+-ATPase inhibitor from bovine adrenal. Biochemistry. 1988 Jun 14;27(12):4244–4253. doi: 10.1021/bi00412a007. [DOI] [PubMed] [Google Scholar]
- Tsien R. W., Carpenter D. O. Ionic mechanisms of pacemaker activity in cardiac Purkinje fibers. Fed Proc. 1978 Jun;37(8):2127–2131. [PubMed] [Google Scholar]
- Vatner S. F., Higgins C. B., Franklin D., Braunwald E. Effects of a digitalis glycoside on coronary and systemic dynamics in conscious dogs. Circ Res. 1971 Apr;28(4):470–479. doi: 10.1161/01.res.28.4.470. [DOI] [PubMed] [Google Scholar]
- Werdan K., Wagenknecht B., Zwissler B., Brown L., Krawietz W., Erdmann E. Cardiac glycoside receptors in cultured heart cells--II. Characterization of a high affinity and a low affinity binding site in heart muscle cells from neonatal rats. Biochem Pharmacol. 1984 Jun 15;33(12):1873–1886. doi: 10.1016/0006-2952(84)90542-2. [DOI] [PubMed] [Google Scholar]
- Yagev S., Heller M., Pinson A. Changes in cytoplasmic and lysosomal enzyme activities in cultured rat heart cells: the relationship to cell differentiation and cell population in culture. In Vitro. 1984 Dec;20(12):893–898. doi: 10.1007/BF02619662. [DOI] [PubMed] [Google Scholar]
- de Wardener H. E., Clarkson E. M. Concept of natriuretic hormone. Physiol Rev. 1985 Jul;65(3):658–759. doi: 10.1152/physrev.1985.65.3.658. [DOI] [PubMed] [Google Scholar]
- de Wardener H. E., MacGregor G. A. Dahl's hypothesis that a saluretic substance may be responsible for a sustained rise in arterial pressure: its possible role in essential hypertension. Kidney Int. 1980 Jul;18(1):1–9. doi: 10.1038/ki.1980.104. [DOI] [PubMed] [Google Scholar]