Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Dec;86(24):10166–10170. doi: 10.1073/pnas.86.24.10166

Cl- permeability of human sweat duct cells monitored with fluorescence-digital imaging microscopy: evidence for reduced plasma membrane Cl- permeability in cystic fibrosis.

S J Ram 1, K L Kirk 1
PMCID: PMC298668  PMID: 2602364

Abstract

Salt reabsorption by the human sweat duct is markedly reduced in cystic fibrosis (CF). We used fluorescence-digital imaging microscopy in combination with a halide-specific fluorescent dye [6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ)] to determine if this defective salt reabsorption is referable to a reduced plasma membrane Cl- permeability of the epithelial cells that line the sweat duct. Sweat duct cells were cultured from explants of normal and CF reabsorptive duct and loaded with SPQ, the fluorescence of which is specifically quenched by halide ions (Br- greater than Cl-) and provides a relative index of intracellular halide concentration. Two lines of evidence indicate that normal sweat duct cells exhibit a substantial permeability to Cl- and Br-. First, the replacement of extracellular Cl- with an impermeant anion (i.e., gluconate) resulted in a rapid and reversible increase in the intracellular fluorescence, as expected if the cells rapidly lost Cl- to the extracellular media. Second, the replacement of extracellular Cl- with Br- resulted in a rapid and reversible quenching of the intracellular fluorescence, as expected if the cells accumulated Br- (a more effective quencher of SPQ fluorescence) in exchange for Cl-. The rate of fluorescence change that was induced by either maneuver was inhibited by the Cl- channel blocker, diphenylamine-2-carboxylate (10 microM). Moreover, CF cells exhibited markedly reduced rates of fluorescence change in response to either maneuver. Our results document the utility of this imaging strategy for assessing the Cl- permeabilities of individual epithelial cells that are affected in cystic fibrosis and indicate that the defective salt reabsorption by the CF sweat duct is referable, at least in part, to a reduced plasma membrane Cl- permeability of sweat duct cells.

Full text

PDF
10166

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arndt-Jovin D. J., Robert-Nicoud M., Kaufman S. J., Jovin T. M. Fluorescence digital imaging microscopy in cell biology. Science. 1985 Oct 18;230(4723):247–256. doi: 10.1126/science.4048934. [DOI] [PubMed] [Google Scholar]
  2. Bijman J., Englert H. C., Lang H. J., Greger R., Frömter E. Characterization of human sweat duct chloride conductance by chloride channel blockers. Pflugers Arch. 1987 May;408(5):511–514. doi: 10.1007/BF00585077. [DOI] [PubMed] [Google Scholar]
  3. Collie G., Buchwald M., Harper P., Riordan J. R. Culture of sweat gland epithelial cells from normal individuals and patients with cystic fibrosis. In Vitro Cell Dev Biol. 1985 Oct;21(10):597–602. doi: 10.1007/BF02620892. [DOI] [PubMed] [Google Scholar]
  4. Di Stefano A., Wittner M., Schlatter E., Lang H. J., Englert H., Greger R. Diphenylamine-2-carboxylate, a blocker of the Cl(-)-conductive pathway in Cl(-)-transporting epithelia. Pflugers Arch. 1985;405 (Suppl 1):S95–100. doi: 10.1007/BF00581787. [DOI] [PubMed] [Google Scholar]
  5. Frizzell R. A., Rechkemmer G., Shoemaker R. L. Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. Science. 1986 Aug 1;233(4763):558–560. doi: 10.1126/science.2425436. [DOI] [PubMed] [Google Scholar]
  6. Hammond S. L., Ham R. G., Stampfer M. R. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5435–5439. doi: 10.1073/pnas.81.17.5435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Illsley N. P., Verkman A. S. Membrane chloride transport measured using a chloride-sensitive fluorescent probe. Biochemistry. 1987 Mar 10;26(5):1215–1219. doi: 10.1021/bi00379a002. [DOI] [PubMed] [Google Scholar]
  8. Knowles M., Gatzy J., Boucher R. Relative ion permeability of normal and cystic fibrosis nasal epithelium. J Clin Invest. 1983 May;71(5):1410–1417. doi: 10.1172/JCI110894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Krapf R., Berry C. A., Verkman A. S. Estimation of intracellular chloride activity in isolated perfused rabbit proximal convoluted tubules using a fluorescent indicator. Biophys J. 1988 Jun;53(6):955–962. doi: 10.1016/S0006-3495(88)83176-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Landry D. W., Reitman M., Cragoe E. J., Jr, Al-Awqati Q. Epithelial chloride channel. Development of inhibitory ligands. J Gen Physiol. 1987 Dec;90(6):779–798. doi: 10.1085/jgp.90.6.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Li M., McCann J. D., Liedtke C. M., Nairn A. C., Greengard P., Welsh M. J. Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature. 1988 Jan 28;331(6154):358–360. doi: 10.1038/331358a0. [DOI] [PubMed] [Google Scholar]
  12. McPherson M. A., Dormer R. L. The molecular and biochemical basis of cystic fibrosis. Biosci Rep. 1987 Mar;7(3):167–185. doi: 10.1007/BF01124787. [DOI] [PubMed] [Google Scholar]
  13. Obaid A. L., Socolar S. J., Rose B. Cell-to-cell channels with two independently regulated gates in series: analysis of junctional conductance modulation by membrane potential, calcium, and pH. J Membr Biol. 1983;73(1):69–89. doi: 10.1007/BF01870342. [DOI] [PubMed] [Google Scholar]
  14. Passow H. Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane. Rev Physiol Biochem Pharmacol. 1986;103:61–203. doi: 10.1007/3540153330_2. [DOI] [PubMed] [Google Scholar]
  15. Quinton P. M. Chloride impermeability in cystic fibrosis. Nature. 1983 Feb 3;301(5899):421–422. doi: 10.1038/301421a0. [DOI] [PubMed] [Google Scholar]
  16. Quinton P. M. Missing Cl conductance in cystic fibrosis. Am J Physiol. 1986 Oct;251(4 Pt 1):C649–C652. doi: 10.1152/ajpcell.1986.251.4.C649. [DOI] [PubMed] [Google Scholar]
  17. Reddy M. M., Quinton P. M. Intracellular potentials of microperfused human sweat duct cells. Pflugers Arch. 1987 Nov;410(4-5):471–475. doi: 10.1007/BF00586527. [DOI] [PubMed] [Google Scholar]
  18. Reuss L., Costantin J. L., Bazile J. E. Diphenylamine-2-carboxylate blocks Cl(-)-HCO3- exchange in Necturus gallbladder epithelium. Am J Physiol. 1987 Jul;253(1 Pt 1):C79–C89. doi: 10.1152/ajpcell.1987.253.1.C79. [DOI] [PubMed] [Google Scholar]
  19. Schoumacher R. A., Shoemaker R. L., Halm D. R., Tallant E. A., Wallace R. W., Frizzell R. A. Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells. Nature. 1987 Dec 24;330(6150):752–754. doi: 10.1038/330752a0. [DOI] [PubMed] [Google Scholar]
  20. Welsh M. J., Liedtke C. M. Chloride and potassium channels in cystic fibrosis airway epithelia. 1986 Jul 31-Aug 6Nature. 322(6078):467–470. doi: 10.1038/322467a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES