Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Aug;84(15):5125–5128. doi: 10.1073/pnas.84.15.5125

Down-regulation of rat kidney calcitonin receptors by salmon calcitonin infusion evidenced by autoradiography.

Z Bouizar, W H Rostène, G Milhaud
PMCID: PMC298806  PMID: 3037535

Abstract

In treating age-related osteoporosis and Paget disease of bone, it is of major importance to avoid an escape phenomenon that would reduce effectiveness of the treatment. The factors involved in the loss of therapeutic efficacy with administration of large pharmacological doses of the hormone require special consideration. Down-regulation of the hormone receptors could account for the escape phenomenon. Specific binding sites for salmon calcitonin (sCT) were characterized and localized by autoradiography on rat kidney sections incubated with 125I-labeled sCT. Autoradiograms demonstrated a heterogenous distribution of 125I-labeled sCT binding sites in the kidney, with high densities in both the superficial layer of the cortex and the outer medulla. Infusion of different doses of unlabeled sCT by means of Alzet minipumps for 7 days produced rapid changes in plasma calcium, phosphate, and magnesium levels, which were no longer observed after 2 or 6 days of treatment. Besides, infusion of high doses of sCT induced down-regulation of renal sCT binding sites located mainly in the medulla, where calcitonin (CT) has been shown to exert its physiological effects on water and ion reabsorption. These data suggest that the resistance to high doses of sCT often observed during long-term treatment of patients may be the consequence of not only bone-cell desensitization but also down-regulation of CT-sensitive kidney receptor sites.

Full text

PDF
5125

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bouizar Z., Rostène W. H., Moukhtar M. S., Milhaud G. Characterization and quantitative topographical distribution of salmon calcitonin-binding sites in rat kidney sections. FEBS Lett. 1986 Feb 3;196(1):19–22. doi: 10.1016/0014-5793(86)80206-x. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Chabardès D., Imbert-Teboul M., Montégut M., Clique A., Morel F. Distribution of calcitonin-sensitive adenylate cyclase activity along the rabbit kidney tubule. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3608–3612. doi: 10.1073/pnas.73.10.3608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Elalouf J. M., Roinel N., de Rouffignac C. ADH-like effects of calcitonin on electrolyte transport by Henle's loop of rat kidney. Am J Physiol. 1984 Feb;246(2 Pt 2):F213–F220. doi: 10.1152/ajprenal.1984.246.2.F213. [DOI] [PubMed] [Google Scholar]
  5. Findlay D. M., Martin T. J. Kinetics of calcitonin receptor internalization in lung cancer (BEN) and osteogenic sarcoma (UMR 106-06) cells. J Bone Miner Res. 1986 Jun;1(3):277–283. doi: 10.1002/jbmr.5650010306. [DOI] [PubMed] [Google Scholar]
  6. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  7. Haddad J. G., Jr, Caldwell J. G. Calcitonin resistance: clinical and immunologic studies in subjects with Paget's disease of bone treated with porcine and salmon calcitonins. J Clin Invest. 1972 Dec;51(12):3133–3141. doi: 10.1172/JCI107140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kahn C. R., Freychet P., Roth J., Neville D. M., Jr Quantitative aspects of the insulin-receptor interaction in liver plasma membranes. J Biol Chem. 1974 Apr 10;249(7):2249–2257. [PubMed] [Google Scholar]
  9. Marx S. J., Woodward C. J., Aurbach G. D. Calcitonin receptors of kidney and bone. Science. 1972 Dec 1;178(4064):999–1001. doi: 10.1126/science.178.4064.999. [DOI] [PubMed] [Google Scholar]
  10. Morel F. Sites of hormone action in the mammalian nephron. Am J Physiol. 1981 Mar;240(3):F159–F164. doi: 10.1152/ajprenal.1981.240.3.F159. [DOI] [PubMed] [Google Scholar]
  11. Obie J. F., Cooper C. W. Loss of calcemic effects of calcitonin and parathyroid hormone infused continuously into rats using the Alzet osmotic minipump. J Pharmacol Exp Ther. 1979 Jun;209(3):422–428. [PubMed] [Google Scholar]
  12. Quamme G. A. Effect of calcitonin on calcium and magnesium transport in rat nephron. Am J Physiol. 1980 Jun;238(6):E573–E578. doi: 10.1152/ajpendo.1980.238.6.E573. [DOI] [PubMed] [Google Scholar]
  13. Rostène W., Mourre C. Préparation de standards iodés pour radioautographie quantitative in vitro à l'aide d'un film sensible au tritium. C R Acad Sci III. 1985;301(5):245–250. [PubMed] [Google Scholar]
  14. Singer F. R., Aldred J. P., Neer R. M., Krane S. M., Potts J. T., Jr, Bloch K. J. An evaluation of antibodies and clinical resistance to salmon calcitonin. J Clin Invest. 1972 Sep;51(9):2331–2338. doi: 10.1172/JCI107044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tashjian A. H., Jr, Wright D. R., Ivey J. L., Pont A. Calcitonin binding sites in bone: relationships to biological response and "escape". Recent Prog Horm Res. 1978;34:285–334. doi: 10.1016/b978-0-12-571134-0.50012-0. [DOI] [PubMed] [Google Scholar]
  16. de Rouffignac C., Elalouf J. M. Effects of calcitonin on the renal concentrating mechanism. Am J Physiol. 1983 Oct;245(4):F506–F511. doi: 10.1152/ajprenal.1983.245.4.F506. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES