Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Aug;84(15):5163–5166. doi: 10.1073/pnas.84.15.5163

Active transport of messenger ribonucleoprotein particles in a reconstituted cell-free system.

B T French, D E Schumm, T E Webb
PMCID: PMC298814  PMID: 2440044

Abstract

The ability of a reconstituted cell-free system to transport mRNA as a ribonucleoprotein particle has been examined. Poly(A) messenger ribonucleoproteins (mRNPs), UV cross-linked after release from isolated liver nuclei in a cell-free system, exhibited a buoyant density of 1.33 g/cm3 in cesium sulfate and 1.47 g/cm3 in cesium chloride, values identical to those of poly(A) mRNP isolated directly from liver polysomes. Furthermore, the in vivo and in vitro transported mRNP showed a similar degree of resistance to RNase digestion and had sedimentation coefficients approximately 2.5 times that of the isolated mRNA. Release of both total mRNA and alpha 2 mu-globulin mRNA was proportional to the concentration of a specific cytoplasmic protein. Removal of the transport proteins from the cytosol with streptomycin sulfate provided a basal system incapable of supporting the active transport of alpha 2 mu-globulin mRNA. Hybridization of released RNA with a recombinant probe specific for intron 6 of alpha 2 mu-globulin showed that intron sequences were retained within the nucleus under optimal alpha 2 mu-globulin mRNA transport conditions and that the transported alpha 2 mu-globulin mRNA was of mature size.

Full text

PDF
5163

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baglia F. A., Maul G. G. Nuclear ribonucleoprotein release and nucleoside triphosphatase activity are inhibited by antibodies directed against one nuclear matrix glycoprotein. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2285–2289. doi: 10.1073/pnas.80.8.2285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brawerman G. The isolation of messenger RNA from mammalian cells. Methods Enzymol. 1974;30:605–612. doi: 10.1016/0076-6879(74)30058-4. [DOI] [PubMed] [Google Scholar]
  3. Clawson G. A., Smuckler E. A. Activation energy for RNA transport from isolated rat liver nuclei. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5400–5404. doi: 10.1073/pnas.75.11.5400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clewell D. B. Nature of Col E 1 plasmid replication in Escherichia coli in the presence of the chloramphenicol. J Bacteriol. 1972 May;110(2):667–676. doi: 10.1128/jb.110.2.667-676.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Greenberg J. R. Proteins crosslinked to messenger RNA by irradiating polyribosomes with ultraviolet light. Nucleic Acids Res. 1980 Dec 11;8(23):5685–5701. doi: 10.1093/nar/8.23.5685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Greenberg J. R. The polyribosomal mRNA--protein complex is a dynamic structure. Proc Natl Acad Sci U S A. 1981 May;78(5):2923–2926. doi: 10.1073/pnas.78.5.2923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Greenberg J. R. Ultraviolet light-induced crosslinking of mRNA to proteins. Nucleic Acids Res. 1979 Feb;6(2):715–732. doi: 10.1093/nar/6.2.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Katz L., Kingsbury D. T., Helinski D. R. Stimulation by cyclic adenosine monophosphate of plasmid deoxyribonucleic acid replication and catabolite repression of the plasmid deoxyribonucleic acid-protein relaxation complex. J Bacteriol. 1973 May;114(2):577–591. doi: 10.1128/jb.114.2.577-591.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kurtz D. T., Nicodemus C. F. Cloning of alpha 2u globulin cDNA using a high efficiency technique for the cloning of trace messenger RNAs. Gene. 1981 Mar;13(2):145–152. doi: 10.1016/0378-1119(81)90003-2. [DOI] [PubMed] [Google Scholar]
  10. Kurtz D. T. Rat alpha 2u globulin is encoded by a multigene family. J Mol Appl Genet. 1981;1(1):29–38. [PubMed] [Google Scholar]
  11. Lebel S., Raymond Y. Lamin B from rat liver nuclei exists both as a lamina protein and as an intrinsic membrane protein. J Biol Chem. 1984 Mar 10;259(5):2693–2696. [PubMed] [Google Scholar]
  12. Mariman E., Hagebols A. M., van Venrooij W. On the localization and transport of specific adenoviral mRNA-sequences in the late infected HeLa cell. Nucleic Acids Res. 1982 Oct 11;10(19):6131–6145. doi: 10.1093/nar/10.19.6131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Maul G. G. The nuclear and the cytoplasmic pore complex: structure, dynamics, distribution, and evolution. Int Rev Cytol Suppl. 1977;(6):75–186. [PubMed] [Google Scholar]
  14. Mayrand S., Pederson T. Nuclear ribonucleoprotein particles probed in living cells. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2208–2212. doi: 10.1073/pnas.78.4.2208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moffett R. B., Webb T. E. Characterization of a messenger RNA transport protein. Biochim Biophys Acta. 1983 Aug 2;740(3):231–242. doi: 10.1016/0167-4781(83)90131-8. [DOI] [PubMed] [Google Scholar]
  16. Moffett R. B., Webb T. E. Regulated transport of messenger ribonucleic acid from isolated liver nuclei by nucleic acid binding proteins. Biochemistry. 1981 May 26;20(11):3253–3262. doi: 10.1021/bi00514a042. [DOI] [PubMed] [Google Scholar]
  17. Purrello F., Burnham D. B., Goldfine I. D. Insulin regulation of protein phosphorylation in isolated rat liver nuclear envelopes: potential relationship to mRNA metabolism. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1189–1193. doi: 10.1073/pnas.80.5.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schumm D. E., Niemann M. A., Palayoor T., Webb T. E. In vivo equivalence of a cell-free system from rat liver for ribosomal RNA processing and transport. J Biol Chem. 1979 Dec 10;254(23):12126–12130. [PubMed] [Google Scholar]
  19. Schumm D. E., Webb T. E. Differential effect of ATP on RNA and DNA release from nuclei of normal and neoplastic liver. Biochem Biophys Res Commun. 1975 Nov 17;67(2):706–713. doi: 10.1016/0006-291x(75)90870-0. [DOI] [PubMed] [Google Scholar]
  20. Schumm D. E., Webb T. E. Differential effect of ATP on RNA and DNA release from nuclei of normal and neoplastic liver. Biochem Biophys Res Commun. 1975 Nov 17;67(2):706–713. doi: 10.1016/0006-291x(75)90870-0. [DOI] [PubMed] [Google Scholar]
  21. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yannarell A., Niemann M., Schumm D. E., Webb T. E. Proflavine sensitivity of RNA processing in isolated nuclei. Nucleic Acids Res. 1977 Mar;4(3):503–511. doi: 10.1093/nar/4.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zasloff M. tRNA transport from the nucleus in a eukaryotic cell: carrier-mediated translocation process. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6436–6440. doi: 10.1073/pnas.80.21.6436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. van Eekelen C. A., van Venrooij W. J. hnRNA and its attachment to a nuclear protein matrix. J Cell Biol. 1981 Mar;88(3):554–563. doi: 10.1083/jcb.88.3.554. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES