Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Aug;84(15):5272–5276. doi: 10.1073/pnas.84.15.5272

Microtubule polarity reversal accompanies regrowth of amputated neurites.

P W Baas, L A White, S R Heidemann
PMCID: PMC298837  PMID: 3299383

Abstract

Intact chicken sensory neurites have the same microtubule polarity reported for nongrowing axons in intact organisms. The assembly-favored or + ends of the microtubules are found at the distal terminal (growth cone) of the neuron. After amputation of chicken sensory neurites, the fragment removed from the cell body collapsed to a bead of axoplasm from which neurites rapidly regrew. In nine such regrown neurites analyzed for microtubule polarity, the + ends of microtubules faced the newly formed growth cones, i.e.,--ends of microtubules were now at the original distal terminal of the neuron. These results indicate that microtubules reorganized concomitant with neurite regrowth to form a uniformly polar microtubule array but with reversed polarity. This suggests that mechanisms within the neurite, independent of the cell body, are sufficient for organization of microtubule assembly during axonal elongation. Our data also indicate that microtubule + ends were correlated with growth cone formation in the following three experimental classes of neurites: normal, regrown, and amputated but extended. We speculate that + ends of microtubules are a requirement for growth cone formation and advance.

Full text

PDF
5272

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen C., Borisy G. G. Structural polarity and directional growth of microtubules of Chlamydomonas flagella. J Mol Biol. 1974 Dec 5;90(2):381–402. doi: 10.1016/0022-2836(74)90381-7. [DOI] [PubMed] [Google Scholar]
  2. Baas P. W., Heidemann S. R. Microtubule reassembly from nucleating fragments during the regrowth of amputated neurites. J Cell Biol. 1986 Sep;103(3):917–927. doi: 10.1083/jcb.103.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bamburg J. R., Bray D., Chapman K. Assembly of microtubules at the tip of growing axons. Nature. 1986 Jun 19;321(6072):788–790. doi: 10.1038/321788a0. [DOI] [PubMed] [Google Scholar]
  4. Bergen L. G., Borisy G. G. Head-to-tail polymerization of microtubules in vitro. Electron microscope analysis of seeded assembly. J Cell Biol. 1980 Jan;84(1):141–150. doi: 10.1083/jcb.84.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Binder L. I., Dentler W. L., Rosenbaum J. L. Assembly of chick brain tubulin onto flagellar microtubules from Chlamydomonas and sea urchin sperm. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1122–1126. doi: 10.1073/pnas.72.3.1122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Black M. M., Keyser P., Sobel E. Interval between the synthesis and assembly of cytoskeletal proteins in cultured neurons. J Neurosci. 1986 Apr;6(4):1004–1012. doi: 10.1523/JNEUROSCI.06-04-01004.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bray D., Gilbert D. Cytoskeletal elements in neurons. Annu Rev Neurosci. 1981;4:505–523. doi: 10.1146/annurev.ne.04.030181.002445. [DOI] [PubMed] [Google Scholar]
  8. Bray D., Thomas C., Shaw G. Growth cone formation in cultures of sensory neurons. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5226–5229. doi: 10.1073/pnas.75.10.5226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brinkley B. R. Microtubule organizing centers. Annu Rev Cell Biol. 1985;1:145–172. doi: 10.1146/annurev.cb.01.110185.001045. [DOI] [PubMed] [Google Scholar]
  10. Burton P. R., Paige J. L. Polarity of axoplasmic microtubules in the olfactory nerve of the frog. Proc Natl Acad Sci U S A. 1981 May;78(5):3269–3273. doi: 10.1073/pnas.78.5.3269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cote R. H., Anderson C. F., Borisy G. G. Formulation of the general rate equation for subunit flux at steady-state. J Mol Biol. 1981 Aug 25;150(4):599–602. doi: 10.1016/0022-2836(81)90383-1. [DOI] [PubMed] [Google Scholar]
  12. Euteneuer U., McIntosh J. R. Polarity of some motility-related microtubules. Proc Natl Acad Sci U S A. 1981 Jan;78(1):372–376. doi: 10.1073/pnas.78.1.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Frizell M., McLean W. G., Sjöstrand J. Slow axonal transport or proteins; blockade by interruption of contact between cell body and axon. Brain Res. 1975 Mar 14;86(1):67–73. doi: 10.1016/0006-8993(75)90638-1. [DOI] [PubMed] [Google Scholar]
  14. Heidemann S. R., Euteneuer U. Microtubule polarity determination based on conditions for tubulin assembly in vitro. Methods Cell Biol. 1982;24:207–216. doi: 10.1016/s0091-679x(08)60656-1. [DOI] [PubMed] [Google Scholar]
  15. Heidemann S. R., Hamborg M. A., Thomas S. J., Song B., Lindley S., Chu D. Spatial organization of axonal microtubules. J Cell Biol. 1984 Oct;99(4 Pt 1):1289–1295. doi: 10.1083/jcb.99.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heidemann S. R., Landers J. M., Hamborg M. A. Polarity orientation of axonal microtubules. J Cell Biol. 1981 Dec;91(3 Pt 1):661–665. doi: 10.1083/jcb.91.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Joshi H. C., Baas P., Chu D. T., Heidemann S. R. The cytoskeleton of neurites after microtubule depolymerization. Exp Cell Res. 1986 Mar;163(1):233–245. doi: 10.1016/0014-4827(86)90576-8. [DOI] [PubMed] [Google Scholar]
  18. Joshi H. C., Chu D., Buxbaum R. E., Heidemann S. R. Tension and compression in the cytoskeleton of PC 12 neurites. J Cell Biol. 1985 Sep;101(3):697–705. doi: 10.1083/jcb.101.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Letourneau P. C. Cell-to-substratum adhesion and guidance of axonal elongation. Dev Biol. 1975 May;44(1):92–101. doi: 10.1016/0012-1606(75)90379-6. [DOI] [PubMed] [Google Scholar]
  20. Lyser K. M. An electron-microscopic study of centrioles in differentiating motor neuroblasts. J Embryol Exp Morphol. 1968 Nov;20(3):343–354. [PubMed] [Google Scholar]
  21. Margolis R. L., Wilson L. Microtubule treadmills--possible molecular machinery. Nature. 1981 Oct 29;293(5835):705–711. doi: 10.1038/293705a0. [DOI] [PubMed] [Google Scholar]
  22. Margolis R. L., Wilson L. Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell. 1978 Jan;13(1):1–8. doi: 10.1016/0092-8674(78)90132-0. [DOI] [PubMed] [Google Scholar]
  23. McNiven M. A., Wang M., Porter K. R. Microtubule polarity and the direction of pigment transport reverse simultaneously in surgically severed melanophore arms. Cell. 1984 Jul;37(3):753–765. doi: 10.1016/0092-8674(84)90411-2. [DOI] [PubMed] [Google Scholar]
  24. Sharp G. A., Weber K., Osborn M. Centriole number and process formation in established neuroblastoma cells and primary dorsal root ganglion neurones. Eur J Cell Biol. 1982 Nov;29(1):97–103. [PubMed] [Google Scholar]
  25. Shaw G., Bray D. Movement and extension of isolated growth cones. Exp Cell Res. 1977 Jan;104(1):55–62. doi: 10.1016/0014-4827(77)90068-4. [DOI] [PubMed] [Google Scholar]
  26. Solomon F. Specification of cell morphology by endogenous determinants. J Cell Biol. 1981 Sep;90(3):547–553. doi: 10.1083/jcb.90.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Spiegelman B. M., Lopata M. A., Kirschner M. W. Multiple sites for the initiation of microtubule assembly in mammalian cells. Cell. 1979 Feb;16(2):239–252. doi: 10.1016/0092-8674(79)90002-3. [DOI] [PubMed] [Google Scholar]
  28. Vlodavsky I., Levi A., Lax I., Fuks Z., Schlessinger J. Induction of cell attachment and morphological differentiation in a pheochromocytoma cell line and embryonal sensory cells by the extracellular matrix. Dev Biol. 1982 Oct;93(2):285–300. doi: 10.1016/0012-1606(82)90118-x. [DOI] [PubMed] [Google Scholar]
  29. Wessells N. K., Johnson S. R., Nuttall R. P. Axon initiation and growth cone regeneration in cultured motor neurons. Exp Cell Res. 1978 Dec;117(2):335–345. doi: 10.1016/0014-4827(78)90147-7. [DOI] [PubMed] [Google Scholar]
  30. Zenker W., Hohberg E. A-alpha-nerve-fiber: number of neurotubules in the stem fibre and in the terminal branches. J Neurocytol. 1973 Jun;2(2):143–148. doi: 10.1007/BF01474716. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES