Abstract
This study was undertaken to characterize bile acid metabolism in hereditary forms of hypertriglyceridemia. Ten hypertriglyceridemic patients (type IV phenotype) with familial combined hyperlipidemia and 7 patients with monogenic familial hypertriglyceridemia (FHTG) were compared with 18 healthy controls; all subjects were males. Pool size, synthesis rate, and fractional catabolic rate of cholic and chenodeoxycholic acids were determined with an isotope dilution technique. Patients with FHTG had synthesis rates of cholic acid, chenodeoxycholic acid, and total bile acids above those seen in normal controls (P less than 0.001); also the fractional catabolic rates of both bile acids were increased (P less than 0.001). In contrast, bile acid kinetic parameters were--with one exception--within normal limits in patients with familial combined hyperlipidemia. The abnormality of bile acid metabolism could also be identified in a normolipidemic individual presumed to carry the gene for FHTG. The postprandial rise of serum bile acids was blunted in FHTG, indicating that the intestinal uptake of bile acids may be deficient in this condition. We conclude that FHTG, but not familial combined hyperlipidemia, is frequently associated with a defective regulation of bile acid synthesis, resulting in abnormally high production rate of bile acids. It is hypothesized that this abnormality is important for the subsequent development of hypertriglyceridemia.
Full text
PDF![5434](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee5/298872/0b18e40d26d5/pnas00330-0356.png)
![5435](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee5/298872/3b95708e95fb/pnas00330-0357.png)
![5436](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee5/298872/7ae0beb66483/pnas00330-0358.png)
![5437](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee5/298872/ea163e661930/pnas00330-0359.png)
![5438](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee5/298872/3596b83db983/pnas00330-0360.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angelin B., Bjökhem I., Einarsson K. Individual serum bile acid concentrations in normo- and hyperlipoproteinemia as determined by mass fragmentography: relation to bile acid pool size. J Lipid Res. 1978 Jul;19(5):527–537. [PubMed] [Google Scholar]
- Angelin B., Björkhem I., Einarsson K., Ewerth S. Cholestyramine treatment reduces postprandial but not fasting serum bile acid levels in humans. Gastroenterology. 1982 Nov;83(5):1097–1101. [PubMed] [Google Scholar]
- Angelin B., Björkhem I., Einarsson K., Ewerth S. Hepatic uptake of bile acids in man. Fasting and postprandial concentrations of individual bile acids in portal venous and systemic blood serum. J Clin Invest. 1982 Oct;70(4):724–731. doi: 10.1172/JCI110668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Angelin B., Einarsson K., Hellström K., Leijd B. Bile acid kinetics in relation to endogenous tryglyceride metabolism in various types of hyperlipoproteinemia. J Lipid Res. 1978 Nov;19(8):1004–1016. [PubMed] [Google Scholar]
- Angelin B., Einarsson K., Hellström K., Leijd B. Effects of cholestyramine and chenodeoxycholic acid on the metabolism of endogenous triglyceride in hyperlipoproteinemia. J Lipid Res. 1978 Nov;19(8):1017–1024. [PubMed] [Google Scholar]
- Beaumont J. L., Carlson L. A., Cooper G. R., Fejfar Z., Fredrickson D. S., Strasser T. Classification of hyperlipidaemias and hyperlipoproteinaemias. Bull World Health Organ. 1970;43(6):891–915. [PMC free article] [PubMed] [Google Scholar]
- Begemann F. Influence of chenodeoxycholic acid on the kinetics of endogenous triglyceride transport in man. Eur J Clin Invest. 1978 Oct;8(5):283–288. doi: 10.1111/j.1365-2362.1978.tb00843.x. [DOI] [PubMed] [Google Scholar]
- Beil U., Crouse J. R., Einarsson K., Grundy S. M. Effects of interruption of the enterohepatic circulation of bile acids on the transport of very low density-lipoprotein triglycerides. Metabolism. 1982 May;31(5):438–444. doi: 10.1016/0026-0495(82)90231-1. [DOI] [PubMed] [Google Scholar]
- Beil U., Grundy S. M., Crouse J. R., Zech L. Triglyceride and cholesterol metabolism in primary hypertriglyceridemia. Arteriosclerosis. 1982 Jan-Feb;2(1):44–57. doi: 10.1161/01.atv.2.1.44. [DOI] [PubMed] [Google Scholar]
- Brunzell J. D., Albers J. J., Chait A., Grundy S. M., Groszek E., McDonald G. B. Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia. J Lipid Res. 1983 Feb;24(2):147–155. [PubMed] [Google Scholar]
- Brunzell J. D., Bierman E. L. Plasma triglyceride and insulin levels in familial hypertriglyceridemia. Ann Intern Med. 1977 Aug;87(2):198–199. doi: 10.7326/0003-4819-87-2-198. [DOI] [PubMed] [Google Scholar]
- Brunzell J. D., Schrott H. G., Motulsky A. G., Bierman E. L. Myocardial infarction in the familial forms of hypertriglyceridemia. Metabolism. 1976 Mar;25(3):313–320. doi: 10.1016/0026-0495(76)90089-5. [DOI] [PubMed] [Google Scholar]
- Carey M. C., Small D. M. The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man. J Clin Invest. 1978 Apr;61(4):998–1026. doi: 10.1172/JCI109025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chait A., Albers J. J., Brunzell J. D. Very low density lipoprotein overproduction in genetic forms of hypertriglyceridaemia. Eur J Clin Invest. 1980 Feb;10(1):17–22. doi: 10.1111/j.1365-2362.1980.tb00004.x. [DOI] [PubMed] [Google Scholar]
- Danielsson H., Sjövall J. Bile acid metabolism. Annu Rev Biochem. 1975;44:233–253. doi: 10.1146/annurev.bi.44.070175.001313. [DOI] [PubMed] [Google Scholar]
- Einarsson K., Hellström K., Kallner M. Bile acid kinetics in relation to sex, serum lipids, body weights, and gallbladder disease in patients with various types of hyperlipoproteinemia;. J Clin Invest. 1974 Dec;54(6):1301–1311. doi: 10.1172/JCI107876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Einarsson K., Hellström K., Kallner M. Effect of cholic acid feeding on bile acid kinetics and neutral fecal steroid excretion in hyperlipoproteinemia (types II and IV). Metabolism. 1974 Sep;23(9):863–873. doi: 10.1016/0026-0495(74)90120-6. [DOI] [PubMed] [Google Scholar]
- Einarsson K., Hellström K., Kallner M. The effect of cholestyramine on the elimination of cholesterol as bile acids in patients with hyperlipoproteinaemia type II and IV. Eur J Clin Invest. 1974 Dec 5;4(6):405–410. doi: 10.1111/j.1365-2362.1974.tb00413.x. [DOI] [PubMed] [Google Scholar]
- Einarsson K., Nilsell K., Leijd B., Angelin B. Influence of age on secretion of cholesterol and synthesis of bile acids by the liver. N Engl J Med. 1985 Aug 1;313(5):277–282. doi: 10.1056/NEJM198508013130501. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Schrott H. G., Hazzard W. R., Bierman E. L., Motulsky A. G. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest. 1973 Jul;52(7):1544–1568. doi: 10.1172/JCI107332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hofmann A. F. The enterohepatic circulation of bile acids in man. Adv Intern Med. 1976;21:501–534. [PubMed] [Google Scholar]
- Janus E. D., Nicoll A. M., Turner P. R., Magill P., Lewis B. Kinetic bases of the primary hyperlipidaemias: studies of apolipoprotein B turnover in genetically defined subjects. Eur J Clin Invest. 1980 Apr;10(2 Pt 1):161–172. doi: 10.1111/j.1365-2362.1980.tb02076.x. [DOI] [PubMed] [Google Scholar]
- Kissebah A. H., Alfarsi S., Adams P. W. Integrated regulation of very low density lipoprotein triglyceride and apolipoprotein-B kinetics in man: normolipemic subjects, familial hypertriglyceridemia and familial combined hyperlipidemia. Metabolism. 1981 Sep;30(9):856–868. doi: 10.1016/0026-0495(81)90064-0. [DOI] [PubMed] [Google Scholar]
- LINDSTEDT S. The turnover of cholic acid in man: bile acids and steroids. Acta Physiol Scand. 1957 Sep 17;40(1):1–9. doi: 10.1111/j.1748-1716.1957.tb01473.x. [DOI] [PubMed] [Google Scholar]
- Nestel P. J., Grundy S. M. Changes in plasma triglyceride metabolism during withdrawal of bile. Metabolism. 1976 Nov;25(11):1259–1268. doi: 10.1016/s0026-0495(76)80009-1. [DOI] [PubMed] [Google Scholar]
- Nikkilä E. A., Aro A. Family study of serum lipids and lipoproteins in coronary heart-disease. Lancet. 1973 May 5;1(7810):954–959. doi: 10.1016/s0140-6736(73)91598-5. [DOI] [PubMed] [Google Scholar]
- Rose H. G., Kranz P., Weinstock M., Juliano J., Haft J. I. Inheritance of combined hyperlipoproteinemia: evidence for a new lipoprotein phenotype. Am J Med. 1973 Feb;54(2):148–160. doi: 10.1016/0002-9343(73)90218-0. [DOI] [PubMed] [Google Scholar]
- Small D. M., Dowling R. H., Redinger R. N. The enterohepatic circulation of bile salts. Arch Intern Med. 1972 Oct;130(4):552–573. [PubMed] [Google Scholar]