Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Aug;84(16):5798–5802. doi: 10.1073/pnas.84.16.5798

Mutants of embryonal carcinoma cells defective in the expression of embryoglycan.

P Dráber, P Malý
PMCID: PMC298950  PMID: 2441394

Abstract

Embryonal carcinoma cells defective in the expression of developmentally regulated carbohydrate epitope of teratocarcinoma cells (TEC-1) were isolated from mutagenized P19X1 and P19S1801A1 cells by a single-step selection technique using monoclonal antibody TEC-01 conjugated to plant toxin ricin. Three independently isolated mutant cell lines were characterized in detail. Analysis of the expression of the TEC-1 epitope in somatic cell hybrids constructed between wild-type and mutant cells and between two mutant cell types revealed that the mutant phenotypes are recessive and that the mutants belong to, at least, two complementation groups. Each mutant cell line exhibited a unique binding pattern of four monoclonal antibodies and five lectins, and different properties of large glycopeptides were distinguished by Sephadex G-50 column chromatography. The combined data suggest that our mutants identify three genes involved in the synthesis of embryoglycan, one of which appears to be the regulatory or structural gene for fucosyltransferase. One mutant cell line was completely deprived of embryoglycan and several carbohydrate structures typical of early embryonic and embryonal carcinoma cells; however, the cells were similar to parental cells in their morphology, their ability to form aggregates when cultured in suspension, their ability to differentiate into neuron-like cells after treatment with retinoic acid, and their ability to form tumors composed of embryonal carcinoma cells. Thus, embryoglycan is not required for the expression of a number of properties of the embryonal carcinoma phenotype.

Full text

PDF
5798

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beyer T. A., Sadler J. E., Rearick J. I., Paulson J. C., Hill R. L. Glycosyltransferases and their use in assessing oligosaccharide structure and structure-function relationships. Adv Enzymol Relat Areas Mol Biol. 1981;52:23–175. doi: 10.1002/9780470122976.ch2. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Buckalew J. J., Sterman B., Rosenstraus M. Variant embryonal carcinoma cells lacking SSEA-1 and Forsmann antigens remain developmentally pluripotent. Dev Biol. 1985 Jan;107(1):134–141. doi: 10.1016/0012-1606(85)90382-3. [DOI] [PubMed] [Google Scholar]
  4. Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977 Feb;104(2):255–262. doi: 10.1016/0014-4827(77)90089-1. [DOI] [PubMed] [Google Scholar]
  5. Dráber P., Pokorná Z. Differentiation antigens of mouse teratocarcinoma stem cells defined by monoclonal antibodies. Cell Differ. 1984 Dec;15(2-4):109–113. doi: 10.1016/0045-6039(84)90060-5. [DOI] [PubMed] [Google Scholar]
  6. Dráber P., Pokorná Z., Vojtísková M. Antibodies against surface antigens common to spermatogenic and F9 teratocarcinoma cells in mice immunized with blood group substances from human saliva. Exp Clin Immunogenet. 1985;2(3):174–182. [PubMed] [Google Scholar]
  7. Dráber P., Stanley P. Isolation and partial characterization of lectin-resistant F9 cells. Somat Cell Mol Genet. 1984 Sep;10(5):445–454. doi: 10.1007/BF01534849. [DOI] [PubMed] [Google Scholar]
  8. Dráber P., Vojtísková M. Developmentally regulated surface structures of teratocarcinoma stem cells studied by mutant cell lines. Cell Differ. 1984 Dec;15(2-4):249–253. doi: 10.1016/0045-6039(84)90082-4. [DOI] [PubMed] [Google Scholar]
  9. Dráber P., Zikán J., Vogtísková M. Establishment and characterization of permanent murine hybridomas secreting monoclonal anti-thy-1 antibodies. J Immunogenet. 1980 Dec;7(6):455–474. doi: 10.1111/j.1744-313x.1980.tb00741.x. [DOI] [PubMed] [Google Scholar]
  10. Feizi T. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature. 1985 Mar 7;314(6006):53–57. doi: 10.1038/314053a0. [DOI] [PubMed] [Google Scholar]
  11. Fenderson B. A., Nichols E. J., Clausen H., Hakomori S. I. A monoclonal antibody defining a binary N-acetyllactosaminyl structure in lactoisooctaosylceramide (IV6Gal beta 1----4GlcNAcnLc6): a useful probe for determining differential glycosylation patterns between normal and transformed human fibroblasts. Mol Immunol. 1986 Jul;23(7):747–754. doi: 10.1016/0161-5890(86)90086-6. [DOI] [PubMed] [Google Scholar]
  12. Fenderson B. A., O'Brien D. A., Millette C. F., Eddy E. M. Stage-specific expression of three cell surface carbohydrate antigens during murine spermatogenesis detected with monoclonal antibodies. Dev Biol. 1984 May;103(1):117–128. doi: 10.1016/0012-1606(84)90013-7. [DOI] [PubMed] [Google Scholar]
  13. Gooi H. C., Feizi T., Kapadia A., Knowles B. B., Solter D., Evans M. J. Stage-specific embryonic antigen involves alpha 1 goes to 3 fucosylated type 2 blood group chains. Nature. 1981 Jul 9;292(5819):156–158. doi: 10.1038/292156a0. [DOI] [PubMed] [Google Scholar]
  14. Gregorová S., Loudová M., Dohnal K., Nosek J., Forejt J. Establishment of a pluripotent embryonal carcinoma cell line not expressing SSEA-1 and ECMA-7 phenotypes. Cell Differ. 1984 Dec;15(2-4):87–92. doi: 10.1016/0045-6039(84)90057-5. [DOI] [PubMed] [Google Scholar]
  15. Hakomori S. Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives. Cancer Res. 1985 Jun;45(6):2405–2414. [PubMed] [Google Scholar]
  16. Jacob F. Mouse teratocarcinoma and embryonic antigens. Immunol Rev. 1977 Jan;33:3–32. doi: 10.1111/j.1600-065x.1977.tb00360.x. [DOI] [PubMed] [Google Scholar]
  17. Jones-Villeneuve E. M., McBurney M. W., Rogers K. A., Kalnins V. I. Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J Cell Biol. 1982 Aug;94(2):253–262. doi: 10.1083/jcb.94.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Martin G. R. Teratocarcinomas and mammalian embryogenesis. Science. 1980 Aug 15;209(4458):768–776. doi: 10.1126/science.6250214. [DOI] [PubMed] [Google Scholar]
  19. McBurney M. W., Jones-Villeneuve E. M., Edwards M. K., Anderson P. J. Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line. Nature. 1982 Sep 9;299(5879):165–167. doi: 10.1038/299165a0. [DOI] [PubMed] [Google Scholar]
  20. McBurney M. W., Rogers B. J. Isolation of male embryonal carcinoma cells and their chromosome replication patterns. Dev Biol. 1982 Feb;89(2):503–508. doi: 10.1016/0012-1606(82)90338-4. [DOI] [PubMed] [Google Scholar]
  21. Muramatsu H., Hamada H., Noguchi S., Kamada Y., Muramatsu T. Cell-surface changes during in vitro differentiation of pluripotent embryonal carcinoma cells. Dev Biol. 1985 Aug;110(2):284–296. doi: 10.1016/0012-1606(85)90088-0. [DOI] [PubMed] [Google Scholar]
  22. Muramatsu H., Kamada Y., Muramatsu T. Purification and properties of N-acetylglucosaminide alpha 1----3-fucosyltransferase from embryonal carcinoma cells. Eur J Biochem. 1986 May 15;157(1):71–75. doi: 10.1111/j.1432-1033.1986.tb09639.x. [DOI] [PubMed] [Google Scholar]
  23. Muramatsu H., Muramatsu T. A fucosyltransferase in teratocarcinoma stem cells. Decreased activity accompanying differentiation to parietal endoderm cells. FEBS Lett. 1983 Nov 14;163(2):181–184. doi: 10.1016/0014-5793(83)80814-x. [DOI] [PubMed] [Google Scholar]
  24. Muramatsu T., Gachelin G., Damonneville M., Delarbre C., Jacob F. Cell surface carbohydrates of embryonal carcinoma cells: polysaccharidic side chains of F9 antigens and of receptors to two lectins, FBP and PNA. Cell. 1979 Sep;18(1):183–191. doi: 10.1016/0092-8674(79)90367-2. [DOI] [PubMed] [Google Scholar]
  25. Muramatsu T., Gachelin G., Nicolas J. F., Condamine H., Jakob H., Jacob F. Carbohydrate structure and cell differentitation: unique properties of fucosyl-glycopeptides isolated from embryonal carcinoma cells. Proc Natl Acad Sci U S A. 1978 May;75(5):2315–2319. doi: 10.1073/pnas.75.5.2315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Noguchi S., Ogata S., Muramatsu T. Altered synthesis of glucosamine-labeled glycopeptides during postimplantation embryogenesis of the mouse. Cell Differ. 1985 Jun;16(4):223–228. doi: 10.1016/0045-6039(85)90571-8. [DOI] [PubMed] [Google Scholar]
  27. Ozawa M., Muramatsu T., Kemler R. Molecular properties of ECMA 2 and ECMA 3 antigens defined by monoclonal antibodies against embryonal carcinoma cells. J Biochem. 1985 Jan;97(1):307–315. doi: 10.1093/oxfordjournals.jbchem.a135055. [DOI] [PubMed] [Google Scholar]
  28. Ozawa M., Muramatsu T., Solter D. SSEA-1, a stage-specific embryonic antigen of the mouse, is carried by the glycoprotein-bound large carbohydrate in embryonal carcinoma cells. Cell Differ. 1985 May;16(3):169–173. doi: 10.1016/0045-6039(85)90514-7. [DOI] [PubMed] [Google Scholar]
  29. Pereira M. E., Kabat E. A. Specificity of purified hemagglutinin (lectin) from Lotus tetragonolobus. Biochemistry. 1974 Jul 16;13(15):3184–3192. doi: 10.1021/bi00712a029. [DOI] [PubMed] [Google Scholar]
  30. Pereira M. E., Kisailus E. C., Gruezo F., Kabat E. A. Immunochemical studies on the combining site of the blood group H-specific lectin 1 from Ulex europeus seeds. Arch Biochem Biophys. 1978 Jan 15;185(1):108–115. doi: 10.1016/0003-9861(78)90149-2. [DOI] [PubMed] [Google Scholar]
  31. Rosenstraus M. J., Hannis M., Kupatt L. J. Isolation and characterization of peanut agglutinin-resistant embryonal carcinoma cell-surface variants. J Cell Physiol. 1982 Aug;112(2):162–170. doi: 10.1002/jcp.1041120203. [DOI] [PubMed] [Google Scholar]
  32. Rosenstraus M. J. Isolation and characterization of an embryonal carcinoma cell line lacking SSEA-1 antigen. Dev Biol. 1983 Oct;99(2):318–323. doi: 10.1016/0012-1606(83)90281-6. [DOI] [PubMed] [Google Scholar]
  33. Sato M., Yonezawa S., Uehara H., Arita Y., Sato E., Muramatsu T. Differential distribution of receptors for two fucose-binding lectins in embryos and adult tissues of the mouse. Differentiation. 1986;30(3):211–219. doi: 10.1111/j.1432-0436.1986.tb00783.x. [DOI] [PubMed] [Google Scholar]
  34. Solter D., Knowles B. B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci U S A. 1978 Nov;75(11):5565–5569. doi: 10.1073/pnas.75.11.5565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stanley P. Selection of lectin-resistant mutants of animal cells. Methods Enzymol. 1983;96:157–184. doi: 10.1016/s0076-6879(83)96015-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES