Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Aug;84(16):5803–5807. doi: 10.1073/pnas.84.16.5803

Vasoactive intestinal peptide enhances aromatase activity in the neonatal rat ovary before development of primary follicles or responsiveness to follicle-stimulating hormone.

F W George, S R Ojeda
PMCID: PMC298951  PMID: 3039508

Abstract

We have investigated the factors that regulate aromatase activity in fetal-neonatal rat ovaries. Ovarian aromatase activity (assessed by measuring the amount of 3H2O) formed from [1 beta-3H]testosterone) is low prior to birth (less than 0.5 pmol/hr per mg of protein) and increases to values greater than 30 pmol/hr per mg of protein between days 8 and 12 after birth. The appearance of ovarian aromatase (postnatal days 2-4) coincides with the development of primordial follicles. Fetal-neonatal ovaries maintained in serum-free organ culture do not develop aromatase activity at the expected time. Ovine follicle-stimulating hormone (0.1-1 microgram/ml), ovine luteinizing hormone (0.1 microgram/ml), or their combination failed to induce the enzyme activity in cultured fetal ovaries, whereas follicle-stimulating hormone is effective in preventing the decline in aromatase activity when postnatal day 8 ovaries are placed in culture. In contrast to follicle-stimulating hormone, dibutyryl-cAMP markedly enhances ovarian aromatase in cultured fetal ovaries. Likewise, enhancement of endogenous cAMP formation with forskolin or cholera toxin caused an increase in enzyme activity within 24 hr. Vasoactive intestinal peptide, a peptide known to occur in ovarian nerves, caused a dose-dependent increase in aromatase activity in fetal ovaries prior to folliculogenesis. Of related peptides tested, only the peptide having N-terminal histidine and C-terminal isoleucine amide was capable of inducing aromatase activity in fetal ovaries. The fact that VIP can induce aromatase activity in fetal rat ovaries prior to follicle formation and prior to responsiveness to follicle-stimulating hormone suggests that this neuropeptide may play a critical role in ovarian differentiation.

Full text

PDF
5803

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed C. E., Dees W. L., Ojeda S. R. The immature rat ovary is innervated by vasoactive intestinal peptide (VIP)-containing fibers and responds to VIP with steroid secretion. Endocrinology. 1986 Apr;118(4):1682–1689. doi: 10.1210/endo-118-4-1682. [DOI] [PubMed] [Google Scholar]
  2. BEN-OR S. Morphological and functional development of the ovary of the mouse. I. Morphology and histochemistry of the developing ovary in normal conditions and after FSH treatment. J Embryol Exp Morphol. 1963 Mar;11:1–11. [PubMed] [Google Scholar]
  3. Bataille D., Gespach C., Laburthe M., Amiranoff B., Tatemoto K., Vauclin N., Mutt V., Rosselin G. Porcine peptide having N-terminal histidine and C-terminal isoleucine amide (PHI): vasoactive intestinal peptide (VIP) and secretin-like effects in different tissues from the rat. FEBS Lett. 1980 Jun 2;114(2):240–242. doi: 10.1016/0014-5793(80)81124-0. [DOI] [PubMed] [Google Scholar]
  4. Bellino F. L., Hussa R. O. Estrogen synthetase stimulation by dibutyryl cyclic adenosine 3',5'-monophosphate in human choriocarcinoma cell culture: the relative biosynthetic rate of the nicotinamide adenine dinucleotide phosphate (reduced form)-cytochrome c reductase component. Endocrinology. 1982 Oct;111(4):1038–1044. doi: 10.1210/endo-111-4-1038. [DOI] [PubMed] [Google Scholar]
  5. Bellino F. L., Hussa R. O. Macromolecular synthesis is required for stimulation of estrogen synthetase activity by dibutyryl cyclic AMP plus theophylline in choriocarcinoma cell culture. Steroids. 1981 Jan;37(1):51–61. doi: 10.1016/0039-128x(81)90007-6. [DOI] [PubMed] [Google Scholar]
  6. Carson R., Smith J. Development and steroidogenic activity of preantral follicles in the neonatal rat ovary. J Endocrinol. 1986 Jul;110(1):87–92. doi: 10.1677/joe.0.1100087. [DOI] [PubMed] [Google Scholar]
  7. Cassel D., Pfeuffer T. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2669–2673. doi: 10.1073/pnas.75.6.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davoren J. B., Hsueh A. J. Vasoactive intestinal peptide: a novel stimulator of steroidogenesis by cultured rat granulosa cells. Biol Reprod. 1985 Aug;33(1):37–52. doi: 10.1095/biolreprod33.1.37. [DOI] [PubMed] [Google Scholar]
  9. Erickson G. F., Hsueh A. J. Stimulation of aromatase activity by follicle stimulating hormone in rat granulosa cells in vivo and in vitro. Endocrinology. 1978 Apr;102(4):1275–1282. doi: 10.1210/endo-102-4-1275. [DOI] [PubMed] [Google Scholar]
  10. Funkenstein B., Nimrod A., Lindner H. R. The development of steroidogenic capability and responsiveness to gonadotropins in cultured neonatal rat ovaries. Endocrinology. 1980 Jan;106(1):98–106. doi: 10.1210/endo-106-1-98. [DOI] [PubMed] [Google Scholar]
  11. George F. W., Ojeda S. R. Changes in aromatase activity in the rat brain during embryonic, neonatal, and infantile development. Endocrinology. 1982 Aug;111(2):522–529. doi: 10.1210/endo-111-2-522. [DOI] [PubMed] [Google Scholar]
  12. George F. W., Wilson J. D. Conversion of androgen to estrogen by the human fetal ovary. J Clin Endocrinol Metab. 1978 Sep;47(3):550–555. doi: 10.1210/jcem-47-3-550. [DOI] [PubMed] [Google Scholar]
  13. George F. W., Wilson J. D. Endocrine differentiation of the fetal rabbit ovary in culture. Nature. 1980 Feb 28;283(5750):861–863. doi: 10.1038/283861a0. [DOI] [PubMed] [Google Scholar]
  14. Gondos B., George F. W., Wilson J. D. Granulosa cell differentiation and estrogen synthesis in the fetal rabbit ovary. Biol Reprod. 1983 Oct;29(3):791–798. doi: 10.1095/biolreprod29.3.791. [DOI] [PubMed] [Google Scholar]
  15. Gore-Langton R. E., Dorrington J. H. FSH induction of aromatase in cultured rat granulosa cells measured by a radiometric assay. Mol Cell Endocrinol. 1981 May;22(2):135–151. doi: 10.1016/0303-7207(81)90087-3. [DOI] [PubMed] [Google Scholar]
  16. Gozes I., Tsafriri A. Detection of vasoactive intestinal peptide-encoding messenger ribonucleic acid in the rat ovaries. Endocrinology. 1986 Dec;119(6):2606–2610. doi: 10.1210/endo-119-6-2606. [DOI] [PubMed] [Google Scholar]
  17. Hunzicker-Dunn M., Birnbaumer L. Adenylyl cyclase activities in ovarian tissues. III. Regulation of responsiveness to LH, FSH, and PGE1 in the prepubertal, cycling, pregnant, and pseudopregnant rat. Endocrinology. 1976 Jul;99(1):198–210. doi: 10.1210/endo-99-1-198. [DOI] [PubMed] [Google Scholar]
  18. Kasson B. G., Lim P., Hsueh A. J. Vasoactive intestinal peptide stimulates androgen biosynthesis by cultured neonatal testicular cells. Mol Cell Endocrinol. 1986 Nov;48(1):21–29. doi: 10.1016/0303-7207(86)90162-0. [DOI] [PubMed] [Google Scholar]
  19. Kasson B. G., Meidan R., Davoren J. B., Hsueh A. J. Identification of subpopulations of rat granulosa cells: sedimentation properties and hormonal responsiveness. Endocrinology. 1985 Sep;117(3):1027–1034. doi: 10.1210/endo-117-3-1027. [DOI] [PubMed] [Google Scholar]
  20. Knecht M., Darbon J. M., Ranta T., Baukal A. J., Catt K. J. Estrogens enhance the adenosine 3',5'-monophosphate-mediated induction of follicle-stimulating hormone and luteinizing hormone receptors in rat granulosa cells. Endocrinology. 1984 Jul;115(1):41–49. doi: 10.1210/endo-115-1-41. [DOI] [PubMed] [Google Scholar]
  21. Knecht M., Ranta T., Catt K. J. Granulosa cell differentiation in vitro: induction and maintenance of follicle-stimulating hormone receptors by adenosine 3',5'-monophosphate. Endocrinology. 1983 Sep;113(3):949–956. doi: 10.1210/endo-113-3-949. [DOI] [PubMed] [Google Scholar]
  22. Kolena J. Ontogenic development of the responsiveness in cAMP synthesis to LH and PGE1 and gonadotropin receptors in the rat ovary. Biol Neonate. 1976;29(1-2):96–103. doi: 10.1159/000240853. [DOI] [PubMed] [Google Scholar]
  23. Kragt C. L., Dahlgren J. Development of neural regulation of follicle stimulating hormone (FSH) secretion. Neuroendocrinology. 1972;9(1):30–40. doi: 10.1159/000122035. [DOI] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Lamprecht S. A., Kohen F., Ausher J., Zor U., Lindner H. R. Hormonal stimulation of oestradiol-17 beta release from the rat ovary during early postnatal development. J Endocrinol. 1976 Feb;68(02):343–344. doi: 10.1677/joe.0.0680343. [DOI] [PubMed] [Google Scholar]
  26. Larsson L. I., Fahrenkrug J., Schaffalitzky de Muckadell O. B. Vasoactive intestinal polypeptide occurs in nerves of the female genitourinary tract. Science. 1977 Sep 30;197(4311):1374–1375. doi: 10.1126/science.897673. [DOI] [PubMed] [Google Scholar]
  27. Leshin M., Baron J., George F. W., Wilson J. D. Increased estrogen formation and aromatase activity in fibroblasts cultured from the skin of chickens with the Henny feathering trait. J Biol Chem. 1981 May 10;256(9):4341–4344. [PubMed] [Google Scholar]
  28. Mendelson C. R., Smith M. E., Cleland W. H., Simpson E. R. Regulation of aromatase activity of cultured adipose stromal cells by catecholamines and adrenocorticotropin. Mol Cell Endocrinol. 1984 Aug;37(1):61–72. doi: 10.1016/0303-7207(84)90128-x. [DOI] [PubMed] [Google Scholar]
  29. Milewich L., George F. W., Wilson J. D. Estrogen formation by the ovary of the rabbit embryo. Endocrinology. 1977 Jan;100(1):187–196. doi: 10.1210/endo-100-1-187. [DOI] [PubMed] [Google Scholar]
  30. Ojeda S. R., Ramírez V. D. Plasma level of LH and FSH in maturing rats: response to hemigonadectomy. Endocrinology. 1972 Feb;90(2):466–472. doi: 10.1210/endo-90-2-466. [DOI] [PubMed] [Google Scholar]
  31. Peluso J. J., Steger R. W., Hafez E. S. Development of gonadotrophin-binding sites in the immature rat ovary. J Reprod Fertil. 1976 May;47(1):55–58. doi: 10.1530/jrf.0.0470055. [DOI] [PubMed] [Google Scholar]
  32. Picon R., Pelloux M. C., Benhaim A., Gloaguen F. Conversion of androgen to estrogen by the rat fetal and neonatal female gonad: effects of dcAMP and FSH. J Steroid Biochem. 1985 Dec;23(6A):995–1000. doi: 10.1016/0022-4731(85)90058-5. [DOI] [PubMed] [Google Scholar]
  33. Ranta T., Knecht M., Darbon J. M., Baukal A. J., Catt K. J. Induction of granulosa cell differentiation by forskolin: stimulation of adenosine 3',5'-monophosphate production, progesterone synthesis, and luteinizing hormone receptor expression. Endocrinology. 1984 Mar;114(3):845–850. doi: 10.1210/endo-114-3-845. [DOI] [PubMed] [Google Scholar]
  34. Reiter E. O., Goldenberg R. L., Vaitukaitis J. L., Ross G. T. A role for endogenous estrogen in normal ovarian development in the neonatal rat. Endocrinology. 1972 Dec;91(6):1537–1539. doi: 10.1210/endo-91-6-1537. [DOI] [PubMed] [Google Scholar]
  35. Richards J. S. Maturation of ovarian follicles: actions and interactions of pituitary and ovarian hormones on follicular cell differentiation. Physiol Rev. 1980 Jan;60(1):51–89. doi: 10.1152/physrev.1980.60.1.51. [DOI] [PubMed] [Google Scholar]
  36. Schwartz N. B. The role of FSH and LH and of their antibodies on follicle growth and on ovulation. Biol Reprod. 1974 Mar;10(2):236–272. doi: 10.1095/biolreprod10.2.236. [DOI] [PubMed] [Google Scholar]
  37. Seamon K. B., Daly J. W. Forskolin: a unique diterpene activator of cyclic AMP-generating systems. J Cyclic Nucleotide Res. 1981;7(4):201–224. [PubMed] [Google Scholar]
  38. Simpson E. R., Ackerman G. E., Smith M. E., Mendelson C. R. Estrogen formation in stromal cells of adipose tissue of women: induction by glucocorticosteroids. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5690–5694. doi: 10.1073/pnas.78.9.5690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tatemoto K., Mutt V. Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature. 1980 Jun 5;285(5764):417–418. doi: 10.1038/285417a0. [DOI] [PubMed] [Google Scholar]
  40. Trzeciak W. H., Ahmed C. E., Simpson E. R., Ojeda S. R. Vasoactive intestinal peptide induces the synthesis of the cholesterol side-chain cleavage enzyme complex in cultured rat ovarian granulosa cells. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7490–7494. doi: 10.1073/pnas.83.19.7490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Welsh T. H., Jr, Zhuang L. Z., Hsueh A. J. Estrogen augmentation of gonadotropin-stimulated progestin biosynthesis in cultured rat granulosa cells. Endocrinology. 1983 Jun;112(6):1916–1924. doi: 10.1210/endo-112-6-1916. [DOI] [PubMed] [Google Scholar]
  42. Weniger J. P., Chouraqui J., Zeis A. Conversion of testosterone and progesterone to oestrone by the ovary of the rat embryo in organ culture. J Steroid Biochem. 1984 Sep;21(3):347–349. doi: 10.1016/0022-4731(84)90291-7. [DOI] [PubMed] [Google Scholar]
  43. White S. S., Ojeda S. R. Changes in ovarian luteinizing hormone and follicle-stimulating hormone receptor content and in gonadotropin-induced ornithine decarboxylase activity during prepubertal and pubertal development of the female rat. Endocrinology. 1981 Jul;109(1):152–161. doi: 10.1210/endo-109-1-152. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES