Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Sep;84(17):6229–6233. doi: 10.1073/pnas.84.17.6229

Molecular genetic characterization of the mRNA coding for an inducible suppressor factor specific for L-glutamic acid60-L-alanine30-L-tyrosine10.

C L Funckes-Shippy, C M Sorensen, C W Pierce, A D Levine
PMCID: PMC299044  PMID: 2442754

Abstract

The suppressor T-cell hybridoma 1556A2.1 can be induced by the monoclonal L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT)-specific suppressor inducer 372B3.5 and soluble GAT to synthesize a disulfide-linked heterodimeric protein (GAT-TsF2), which directly suppresses a primary in vitro immune response to GAT. Induction and synthesis of the GAT-TsF2 protein is correlated with the appearance of specific mRNA, as detected by translation in vitro in a wheat germ cell-free extract of RNA isolated at various times after induction. The mRNA coding for the polypeptide chain that bears a serologically defined I-J determinant (I-J+ chain) appeared 8 hr after induction, whereas the mRNA coding for the antigen-binding chain (AB+ chain) was not detected until 16 hr after induction. The mRNAs coding for the individual chains sedimented as different species, suggesting that the two-chain factor is the product of two genes. The AB+ chain of the 1556A2.1 GAT-TsF2 was synthesized on membrane-bound polysomes, whereas the I-J+ chain was translated on free polysomes. The AB+ chain was synthesized from two independent mRNA species sedimenting at 10 S and 28 S, whereas a single 16S mRNA encoded the I-J+ chain. The in vitro translated I-J+ chain was bound by a monoclonal antibody against the I-J+ determinant of only the appropriate H-2 haplotype. These results suggest that posttranslational modification, including glycosylation, is not required for biological activity or for expression of the I-J epitope on the GAT-TsF2 molecule.

Full text

PDF
6229

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alt F. W., Blackwell T. K., DePinho R. A., Reth M. G., Yancopoulos G. D. Regulation of genome rearrangement events during lymphocyte differentiation. Immunol Rev. 1986 Feb;89:5–30. doi: 10.1111/j.1600-065x.1986.tb01470.x. [DOI] [PubMed] [Google Scholar]
  2. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benacerraf B., McDevitt H. O. Histocompatibility-linked immune response genes. Science. 1972 Jan 21;175(4019):273–279. doi: 10.1126/science.175.4019.273. [DOI] [PubMed] [Google Scholar]
  4. Buss J. E., Kamps M. P., Sefton B. M. Myristic acid is attached to the transforming protein of Rous sarcoma virus during or immediately after synthesis and is present in both soluble and membrane-bound forms of the protein. Mol Cell Biol. 1984 Dec;4(12):2697–2704. doi: 10.1128/mcb.4.12.2697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kapp J. A., Pierce C. W., Benacerraf B. Genetic control of immune responses in vitro. I. Development of primary and secondary plaque-forming cell responses to the random terpolymer 1-glutamic acid 60-1-alanine30-1-tyrosine10 (GAT) by mouse spleen cells in vitro. J Exp Med. 1973 Nov 1;138(5):1107–1120. doi: 10.1084/jem.138.5.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kapp J. A., Pierce C. W., Benacerraf B. Immunosuppressive factor(s) extracted from lymphoid cells of nonresponder mice primed with L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) II. Cellular source and effect on responder and nonresponder mice. J Exp Med. 1977 Apr 1;145(4):828–838. doi: 10.1084/jem.145.4.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kapp J. A., Pierce C. W., De la Croix F., Benacerraf B. Immunosuppressive factor(s) extracted from lymphoid cells of nonresponder mice primed with L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT). J Immunol. 1976 Feb;116(2):305–309. [PubMed] [Google Scholar]
  8. Kapp J. A., Pierce C. W., Schlossman S., Benacerraf B. Genetic control of immune responses in vitro. V. Stimulation of suppressor T cells in nonresponder mice by the terpolymer L-glutamic acid 60-L-alanine 30-L-tyrosine 10 (GAT). J Exp Med. 1974 Sep 1;140(3):648–659. doi: 10.1084/jem.140.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kapp J. A., Sorensen C. M., Pierce C. W. Antigen-specific suppressor T cell interactions. II. Characterization of two different types of suppressor T cell factors specific for L-glutamic acid50-L-tyrosine50 (GT) and L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT). J Exp Med. 1983 Dec 1;158(6):1962–1978. doi: 10.1084/jem.158.6.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Klyczek K. K., Cantor H., Hayes C. E. T cell surface I-J glycoprotein. Concerted action of chromosome-4 and -17 genes forms an epitope dependent on alpha-D-mannosyl residues. J Exp Med. 1984 Jun 1;159(6):1604–1617. doi: 10.1084/jem.159.6.1604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krupen K., Araneo B. A., Brink L., Kapp J. A., Stein S., Wieder K. J., Webb D. R. Purification and characterization of a monoclonal T-cell suppressor factor specific for poly(LGlu60LAla30LTyr10). Proc Natl Acad Sci U S A. 1982 Feb;79(4):1254–1258. doi: 10.1073/pnas.79.4.1254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee J. S., Varmus H. E., Bishop J. M. Virus-specific messenger RNAs in permissive cells infected by avian sarcoma virus. J Biol Chem. 1979 Aug 25;254(16):8015–8022. [PubMed] [Google Scholar]
  13. Levinson A. D., Courtneidge S. A., Bishop J. M. Structural and functional domains of the Rous sarcoma virus transforming protein (pp60src). Proc Natl Acad Sci U S A. 1981 Mar;78(3):1624–1628. doi: 10.1073/pnas.78.3.1624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lodish H. F. Biosynthesis of reticulocyte membrane proteins by membrane-free polyribosomes. Proc Natl Acad Sci U S A. 1973 May;70(5):1526–1530. doi: 10.1073/pnas.70.5.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lodish H. F., Small B. Membrane proteins synthesized by rabbit reticulocytes. J Cell Biol. 1975 Apr;65(1):51–64. doi: 10.1083/jcb.65.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lowe D., Hallinan T. Preferential synthesis of a membrane-associated protein by free polyribosomes. Biochem J. 1973 Nov;136(3):825–828. doi: 10.1042/bj1360825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mechler B., Rabbitts T. H. Membrane-bound ribosomes of myeloma cells. IV. mRNA complexity of free and membrane-bound polysomes. J Cell Biol. 1981 Jan;88(1):29–36. doi: 10.1083/jcb.88.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Minami M., Okuda K., Furusawa S., Dorf M. E. Analysis of T cell hybridomas. IV. Characterization of inducible suppressor cell hybridomas. J Exp Med. 1983 May 1;157(5):1379–1395. doi: 10.1084/jem.157.5.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morrison T. G. Site of synthesis of membrane and nonmembrane proteins of vesicular stomatitis virus. J Biol Chem. 1975 Sep 10;250(17):6955–6962. [PubMed] [Google Scholar]
  20. Murphy D. B., Herzenberg L. A., Okumura K., Herzenberg L. A., McDevitt H. O. A new I subregion (I-J) marked by a locus (Ia-4) controlling surface determinants on suppressor T lymphocytes. J Exp Med. 1976 Sep 1;144(3):699–712. doi: 10.1084/jem.144.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pierce C. W., Kapp J. A. Regulation of immune responses by suppressor T cells. Tohoku J Exp Med. 1976;5:91–143. [PubMed] [Google Scholar]
  22. Pierce C. W., Kapp J. A., Sorensen C. M., Trial J. T cell subsets in (responder x nonresponder)F1 mice regulating antibody responses to L-glutamic acid60-L-alanine30-L-tyrosine (GAT). J Immunol. 1984 Dec;133(6):2874–2881. [PubMed] [Google Scholar]
  23. Pierce C. W., Sorensen C. M., Kapp J. A. T cell subsets regulating antibody responses to L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) in virgin and immunized nonresponder mice. J Immunol. 1985 Jan;134(1):29–36. [PubMed] [Google Scholar]
  24. Reth M. G., Ammirati P., Jackson S., Alt F. W. Regulated progression of a cultured pre-B-cell line to the B-cell stage. 1985 Sep 26-Oct 2Nature. 317(6035):353–355. doi: 10.1038/317353a0. [DOI] [PubMed] [Google Scholar]
  25. Roberts B. E., Paterson B. M. Efficient translation of tobacco mosaic virus RNA and rabbit globin 9S RNA in a cell-free system from commercial wheat germ. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2330–2334. doi: 10.1073/pnas.70.8.2330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sorensen C. M., Pierce C. W. Antigen-specific suppression in genetic responder mice to L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT). Characterization of conventional and hybridoma-derived factors produced by suppressor T cells from mice injected as neonates with syngeneic GAT macrophages. J Exp Med. 1982 Dec 1;156(6):1691–1710. doi: 10.1084/jem.156.6.1691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sorensen C. M., Pierce C. W. Identification and characterization of a suppressor T cell hybridoma specifically inducible by L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT). J Immunol. 1986 Sep 1;137(5):1455–1461. [PubMed] [Google Scholar]
  28. Sorensen C. M., Pierce C. W., Webb D. R. Purification and characterization of an L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT)-specific suppressor factor from genetic responder mice. J Exp Med. 1983 Oct 1;158(4):1034–1047. doi: 10.1084/jem.158.4.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sperling R., Sperling J., Levine A. D., Spann P., Stark G. R., Kornberg R. D. Abundant nuclear ribonucleoprotein form of CAD RNA. Mol Cell Biol. 1985 Mar;5(3):569–575. doi: 10.1128/mcb.5.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tada T., Taniguchi M., David C. S. Properties of the antigen-specific suppressive T-cell factor in the regulation of antibody response of the mouse. IV. Special subregion assignment of the gene(s) that codes for the suppressive T-cell factor in the H-2 histocompatibility complex. J Exp Med. 1976 Sep 1;144(3):713–725. doi: 10.1084/jem.144.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Takei I., Sumida T., Taniguchi M. Acceptor-suppressor T cell hybridoma with a receptor recognizing antigen-specific suppressor factor. J Exp Med. 1983 Dec 1;158(6):1912–1923. doi: 10.1084/jem.158.6.1912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Taniguchi M., Tokuhisa T., Kanno M., Yaoita Y., Shimizu A., Honjo T. Reconstitution of antigen-specific suppressor activity with translation products of mRNA. Nature. 1982 Jul 8;298(5870):172–174. doi: 10.1038/298172a0. [DOI] [PubMed] [Google Scholar]
  33. Taylor W. L., Collier K. J., Deschenes R. J., Weith H. L., Dixon J. E. Sequence analysis of a cDNA coding for a pancreatic precursor to somatostatin. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6694–6698. doi: 10.1073/pnas.78.11.6694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Walden W. E., Thach R. E. Translational control of gene expression in a normal fibroblast. Characterization of a subclass of mRNAs with unusual kinetic properties. Biochemistry. 1986 Apr 22;25(8):2033–2041. doi: 10.1021/bi00356a030. [DOI] [PubMed] [Google Scholar]
  35. Waltenbaugh C. Regulation of immune responses by I-J gene products. I. Production and characterization of anti-I-J monoclonal antibodies. J Exp Med. 1981 Nov 1;154(5):1570–1583. doi: 10.1084/jem.154.5.1570. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES