Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Sep;84(17):6302–6306. doi: 10.1073/pnas.84.17.6302

cDNAs for the postsynaptic 43-kDa protein of Torpedo electric organ encode two proteins with different carboxyl termini.

D E Frail, J Mudd, V Shah, C Carr, J B Cohen, J P Merlie
PMCID: PMC299059  PMID: 3476945

Abstract

Postsynaptic membranes isolated from Torpedo electric organ are highly enriched in the nicotinic acetylcholine receptor and a nonreceptor protein of 43 kDa; the distribution of the 43-kDa protein and the receptor is coextensive in the electrical membrane. As a first step in understanding the regulation of 43-kDa protein expression, we have isolated and characterized 43-kDa protein cDNAs. A lambda gt11 cDNA library was constructed from Torpedo californica electric organ mRNA and screened with a pool of 26-mer oligonucleotides encoding a short tryptic fragment of the 43-kDa synaptic protein. Positive clones were purified and sequenced; the amino acid sequences were deduced, and they matched chemically determined protein sequences of the 43-kDa protein. Two distinct classes of cDNAs were obtained; one class encoded a 43-kDa protein of 389 amino acids with a calculated molecular mass of 43,988 daltons, and another class encoded a second 43-kDa protein containing 23 additional amino acids at the C terminus. Therefore, it appears that two 43-kDa proteins with different carboxyl termini are encoded by separate mRNAs. Consistent with this idea, blot hybridization analysis revealed multiple polyadenylylated 43-kDa mRNAs in electric organ. One polyadenylylated mRNA of approximately equal to 2.0 kilobases in length was apparent in both embryonic day-11 chick muscle and the mouse muscle cell line BC3H1.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnstiel M. L., Busslinger M., Strub K. Transcription termination and 3' processing: the end is in site! Cell. 1985 Jun;41(2):349–359. doi: 10.1016/s0092-8674(85)80007-6. [DOI] [PubMed] [Google Scholar]
  2. Buonanno A., Mudd J., Shah V., Merlie J. P. A universal oligonucleotide probe for acetylcholine receptor genes. Selection and sequencing of cDNA clones for the mouse muscle beta subunit. J Biol Chem. 1986 Dec 15;261(35):16451–16458. [PubMed] [Google Scholar]
  3. Burden S. J., DePalma R. L., Gottesman G. S. Crosslinking of proteins in acetylcholine receptor-rich membranes: association between the beta-subunit and the 43 kd subsynaptic protein. Cell. 1983 Dec;35(3 Pt 2):687–692. doi: 10.1016/0092-8674(83)90101-0. [DOI] [PubMed] [Google Scholar]
  4. Burden S. J. The subsynaptic 43-kDa protein is concentrated at developing nerve-muscle synapses in vitro. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8270–8273. doi: 10.1073/pnas.82.23.8270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cartaud J., Sobel A., Rousselet A., Devaux P. F., Changeux J. P. Consequences of alkaline treatment for the ultrastructure of the acetylcholine-receptor-rich membranes from Torpedo marmorata electric organ. J Cell Biol. 1981 Aug;90(2):418–426. doi: 10.1083/jcb.90.2.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  7. Dalbadie-McFarland G., Cohen L. W., Riggs A. D., Morin C., Itakura K., Richards J. H. Oligonucleotide-directed mutagenesis as a general and powerful method for studies of protein function. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6409–6413. doi: 10.1073/pnas.79.21.6409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dale R. M., McClure B. A., Houchins J. P. A rapid single-stranded cloning strategy for producing a sequential series of overlapping clones for use in DNA sequencing: application to sequencing the corn mitochondrial 18 S rDNA. Plasmid. 1985 Jan;13(1):31–40. doi: 10.1016/0147-619x(85)90053-8. [DOI] [PubMed] [Google Scholar]
  9. Fahey R. C., Hunt J. S., Windham G. C. On the cysteine and cystine content of proteins. Differences between intracellular and extracellular proteins. J Mol Evol. 1977 Nov 25;10(2):155–160. doi: 10.1007/BF01751808. [DOI] [PubMed] [Google Scholar]
  10. Froehner S. C., Gulbrandsen V., Hyman C., Jeng A. Y., Neubig R. R., Cohen J. B. Immunofluorescence localization at the mammalian neuromuscular junction of the Mr 43,000 protein of Torpedo postsynaptic membranes. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5230–5234. doi: 10.1073/pnas.78.8.5230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fry D. C., Kuby S. A., Mildvan A. S. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins. Proc Natl Acad Sci U S A. 1986 Feb;83(4):907–911. doi: 10.1073/pnas.83.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gordon A. S., Milfay D., Diamond I. Identification of a molecular weight 43,000 protein kinase in acetylcholine receptor-enriched membranes. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5862–5865. doi: 10.1073/pnas.80.19.5862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gordon A. S., Milfay D. nu 1, a Mr 43,000 component of postsynaptic membranes, is a protein kinase. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4172–4174. doi: 10.1073/pnas.83.12.4172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  15. Gysin R., Yost B., Flanagan S. D. Immunochemical and molecular differentiation of 43 000 molecular weight proteins associated with Torpedo neuroelectrocyte synapses. Biochemistry. 1983 Dec 6;22(25):5781–5789. doi: 10.1021/bi00294a016. [DOI] [PubMed] [Google Scholar]
  16. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  17. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  18. LaRochelle W. J., Froehner S. C. Determination of the tissue distributions and relative concentrations of the postsynaptic 43-kDa protein and the acetylcholine receptor in Torpedo. J Biol Chem. 1986 Apr 25;261(12):5270–5274. [PubMed] [Google Scholar]
  19. Leff S. E., Rosenfeld M. G., Evans R. M. Complex transcriptional units: diversity in gene expression by alternative RNA processing. Annu Rev Biochem. 1986;55:1091–1117. doi: 10.1146/annurev.bi.55.070186.005303. [DOI] [PubMed] [Google Scholar]
  20. Neubig R. R., Krodel E. K., Boyd N. D., Cohen J. B. Acetylcholine and local anesthetic binding to Torpedo nicotinic postsynaptic membranes after removal of nonreceptor peptides. Proc Natl Acad Sci U S A. 1979 Feb;76(2):690–694. doi: 10.1073/pnas.76.2.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Owens G. C., Edelman G. M., Cunningham B. A. Organization of the neural cell adhesion molecule (N-CAM) gene: alternative exon usage as the basis for different membrane-associated domains. Proc Natl Acad Sci U S A. 1987 Jan;84(1):294–298. doi: 10.1073/pnas.84.1.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Peng H. B., Froehner S. C. Association of the postsynaptic 43K protein with newly formed acetylcholine receptor clusters in cultured muscle cells. J Cell Biol. 1985 May;100(5):1698–1705. doi: 10.1083/jcb.100.5.1698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Porter S., Froehner S. C. Interaction of the 43K protein with components of Torpedo postsynaptic membranes. Biochemistry. 1985 Jan 15;24(2):425–432. doi: 10.1021/bi00323a028. [DOI] [PubMed] [Google Scholar]
  24. Rousselet A., Cartaud J., Devaux P. F., Changeux J. P. The rotational diffusion of the acetylcholine receptor in Torpeda marmorata membrane fragments studied with a spin-labelled alpha-toxin: importance of the 43 000 protein(s). EMBO J. 1982;1(4):439–445. doi: 10.1002/j.1460-2075.1982.tb01188.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sealock R., Wray B. E., Froehner S. C. Ultrastructural localization of the Mr 43,000 protein and the acetylcholine receptor in Torpedo postsynaptic membranes using monoclonal antibodies. J Cell Biol. 1984 Jun;98(6):2239–2244. doi: 10.1083/jcb.98.6.2239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Simmerman H. K., Collins J. H., Theibert J. L., Wegener A. D., Jones L. R. Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. J Biol Chem. 1986 Oct 5;261(28):13333–13341. [PubMed] [Google Scholar]
  28. Sobel A., Weber M., Changeux J. P. Large-scale purification of the acetylcholine-receptor protein in its membrane-bound and detergent-extracted forms from Torpedo marmorata electric organ. Eur J Biochem. 1977 Oct 17;80(1):215–224. doi: 10.1111/j.1432-1033.1977.tb11874.x. [DOI] [PubMed] [Google Scholar]
  29. St John P. A., Froehner S. C., Goodenough D. A., Cohen J. B. Nicotinic postsynaptic membranes from Torpedo: sidedness, permeability to macromolecules, and topography of major polypeptides. J Cell Biol. 1982 Feb;92(2):333–342. doi: 10.1083/jcb.92.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Towler D. A., Eubanks S. R., Towery D. S., Adams S. P., Glaser L. Amino-terminal processing of proteins by N-myristoylation. Substrate specificity of N-myristoyl transferase. J Biol Chem. 1987 Jan 25;262(3):1030–1036. [PubMed] [Google Scholar]
  31. Walker J. H., Boustead C. M., Witzemann V. The 43-K protein, v1, associated with acetylcholine receptor containing membrane fragments is an actin-binding protein. EMBO J. 1984 Oct;3(10):2287–2290. doi: 10.1002/j.1460-2075.1984.tb02127.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wennogle L. P., Changeux J. P. Transmembrane orientation of proteins present in acetylcholine receptor-rich membranes from Torpedo marmorata studied by selective proteolysis. Eur J Biochem. 1980 May;106(2):381–393. doi: 10.1111/j.1432-1033.1980.tb04584.x. [DOI] [PubMed] [Google Scholar]
  33. Young R. A., Davis R. W. Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1194–1198. doi: 10.1073/pnas.80.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES