Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Sep;84(18):6369–6373. doi: 10.1073/pnas.84.18.6369

Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst.

R Iyengar, D J Stuehr, M A Marletta
PMCID: PMC299077  PMID: 2819872

Abstract

The macrophage cell line RAW 264.7 when activated with Escherichia coli lipopolysaccharide and interferon-gamma synthesized nitrite (NO3-) and nitrate (NO3-). Medium change after the activation showed that L-arginine was the only amino acid essential for this synthesis. D-Arginine would not substitute for L-arginine. Other analogues that could replace L-arginine were L-homoarginine, L-arginine methyl ester, L-arginamide, and the peptide L-arginyl-L-aspartate. L-Argininic acid, L-agmatine, L-ornithine, urea, L-citrulline, and ammonia were among the nonprecursors, while L-canavanine inhibited this L-arginine-derived NO2-/NO3- synthesis. When morpholine was added to the culture medium of the activated RAW 264.7 macrophages, N-nitrosation took place, generating N-nitrosomorpholine. GC/MS experiments using L-[guanido-15N2]arginine established that the NO2-/NO3- and the nitrosyl group of N-nitrosomorpholine were derived exclusively from one or both of the terminal guanido nitrogens of arginine. Chromatographic analysis showed that the other product of the L-arginine synthesis of NO2-/NO3- was L-citrulline. The role of the respiratory burst in NO2-/NO3- synthesis was examined using the macrophage cell lines J774.16 and J774 C3C. Both cell lines synthesized similar amounts of NO2-/NO3-. However, J774 C3C cells do not produce superoxide and hence do not exhibit the respiratory burst. Additional experiments also ruled out the involvement of the respiratory burst in NO2-/NO3- synthesis.

Full text

PDF
6369

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babior B. M. The respiratory burst of phagocytes. J Clin Invest. 1984 Mar;73(3):599–601. doi: 10.1172/JCI111249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CASTELLANI A. G., NIVEN C. F., Jr Factors affecting the bacteriostatic action of sodium nitrite. Appl Microbiol. 1955 May;3(3):154–159. doi: 10.1128/am.3.3.154-159.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Currie G. A. Activated macrophages kill tumour cells by releasing arginase. Nature. 1978 Jun 29;273(5665):758–759. doi: 10.1038/273758a0. [DOI] [PubMed] [Google Scholar]
  4. Damiani G., Kiyotaki C., Soeller W., Sasada M., Peisach J., Bloom B. R. Macrophage variants in oxygen metabolism. J Exp Med. 1980 Oct 1;152(4):808–822. doi: 10.1084/jem.152.4.808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fernstrom M. H., Fernstrom J. D. Rapid measurement of free amino acids in serum and CSF using high-performance liquid chromatography. Life Sci. 1981 Nov 16;29(20):2119–2130. doi: 10.1016/0024-3205(81)90669-x. [DOI] [PubMed] [Google Scholar]
  6. Gopalakrishna R., Nagarajan B. Separation and estimation of arginine-related metabolites in tissues. Anal Biochem. 1980 Sep 15;107(2):318–323. doi: 10.1016/0003-2697(80)90390-5. [DOI] [PubMed] [Google Scholar]
  7. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  8. Hibbs J. B., Jr, Taintor R. R., Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 1987 Jan 23;235(4787):473–476. doi: 10.1126/science.2432665. [DOI] [PubMed] [Google Scholar]
  9. Hibbs J. B., Jr, Vavrin Z., Taintor R. R. L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol. 1987 Jan 15;138(2):550–565. [PubMed] [Google Scholar]
  10. Kiyotaki C., Peisach J., Bloom B. R. Oxygen metabolism in cloned macrophage cell lines: glucose dependence of superoxide production, metabolic and spectral analysis. J Immunol. 1984 Feb;132(2):857–866. [PubMed] [Google Scholar]
  11. Miwa M., Stuehr D. J., Marletta M. A., Wishnok J. S., Tannenbaum S. R. Nitrosation of amines by stimulated macrophages. Carcinogenesis. 1987 Jul;8(7):955–958. doi: 10.1093/carcin/8.7.955. [DOI] [PubMed] [Google Scholar]
  12. Stuehr D. J., Marletta M. A. Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines, or interferon-gamma. J Immunol. 1987 Jul 15;139(2):518–525. [PubMed] [Google Scholar]
  13. Stuehr D. J., Marletta M. A. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7738–7742. doi: 10.1073/pnas.82.22.7738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tai A. W., Lien E. J., Lai M. M., Khwaja T. A. Novel N-hydroxyguanidine derivatives as anticancer and antiviral agents. J Med Chem. 1984 Feb;27(2):236–238. doi: 10.1021/jm00368a024. [DOI] [PubMed] [Google Scholar]
  15. Tesch J. W., Rehg W. R., Sievers R. E. Microdetermination of nitrates and nitrites in saliva, blood, water, and suspended particulates in air by gas chromatography. J Chromatogr. 1976 Nov 3;126:743–755. doi: 10.1016/s0021-9673(01)84117-0. [DOI] [PubMed] [Google Scholar]
  16. Young C. W., Schochetman G., Hodas S., Balis M. E. Inhibition of DNA synthesis by hydroxyurea: structure-activity relationships. Cancer Res. 1967 Mar;27(3):535–540. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES