Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Sep;84(18):6511–6515. doi: 10.1073/pnas.84.18.6511

RNase III stimulates the translation of the cIII gene of bacteriophage lambda.

S Altuvia, H Locker-Giladi, S Koby, O Ben-Nun, A B Oppenheim
PMCID: PMC299107  PMID: 2957696

Abstract

The bacteriophage lambda cIII gene product regulates the lysogenic pathway by stabilizing the lambda cII regulatory protein. Our results show that the expression of the lambda cIII gene is subject to specific requirements. Tests of a set of cIII-lacZ gene and operon fusions reveal that a sequence upstream of the cIII ribosome binding site is needed for cIII translation. The sequence contains an inefficient RNase III processing site. Furthermore, expression of cIII is drastically reduced in cells lacking RNase III. We have isolated a phage carrying a mutation (r1), which lies in the upstream sequence, that leads to a reduction in cIII translation and inactivates the RNase III processing site. The r1 mutant is nevertheless still dependent on RNase III for cIII translation; r1 reduces cIII translation by a factor of 3 in wild-type cells and by a factor of approximately equal to 30 in an RNase III mutant host. We propose that RNase III stimulates cIII translation by binding to the upstream sequence and thereby exposing the cIII ribosome binding site. This stimulation does not involve RNA cleavage. Consistent with this hypothesis is our finding that, in vitro, unprocessed cIII mRNA is translated, whereas RNase III-cleaved cIII mRNA is not.

Full text

PDF
6511

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altuvia S., Oppenheim A. B. Translational regulatory signals within the coding region of the bacteriophage lambda cIII gene. J Bacteriol. 1986 Jul;167(1):415–419. doi: 10.1128/jb.167.1.415-419.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barry G., Squires C., Squires C. L. Attenuation and processing of RNA from the rplJL--rpoBC transcription unit of Escherichia coli. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3331–3335. doi: 10.1073/pnas.77.6.3331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Butler J. S., Springer M., Dondon J., Grunberg-Manago M. Posttranscriptional autoregulation of Escherichia coli threonyl tRNA synthetase expression in vivo. J Bacteriol. 1986 Jan;165(1):198–203. doi: 10.1128/jb.165.1.198-203.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Casadaban M. J., Chou J., Cohen S. N. In vitro gene fusions that join an enzymatically active beta-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol. 1980 Aug;143(2):971–980. doi: 10.1128/jb.143.2.971-980.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark M. W., Lake J. A. Unusual rRNA-linked complex of 50S ribosomal subunits isolated from an Escherichia coli RNase III mutant. J Bacteriol. 1984 Mar;157(3):971–974. doi: 10.1128/jb.157.3.971-974.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dennis P. P. Site specific deletions of regulatory sequences in a ribosomal protein-RNA polymerase operon in Escherichia coli. Effects on beta and beta' gene expression. J Biol Chem. 1984 Mar 10;259(5):3202–3209. [PubMed] [Google Scholar]
  7. Dunn J. J., Studier F. W. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol. 1983 Jun 5;166(4):477–535. doi: 10.1016/s0022-2836(83)80282-4. [DOI] [PubMed] [Google Scholar]
  8. Gold L., Pribnow D., Schneider T., Shinedling S., Singer B. S., Stormo G. Translational initiation in prokaryotes. Annu Rev Microbiol. 1981;35:365–403. doi: 10.1146/annurev.mi.35.100181.002053. [DOI] [PubMed] [Google Scholar]
  9. Gottesman M., Oppenheim A., Court D. Retroregulation: control of gene expression from sites distal to the gene. Cell. 1982 Jul;29(3):727–728. doi: 10.1016/0092-8674(82)90434-2. [DOI] [PubMed] [Google Scholar]
  10. Herskowitz I., Hagen D. The lysis-lysogeny decision of phage lambda: explicit programming and responsiveness. Annu Rev Genet. 1980;14:399–445. doi: 10.1146/annurev.ge.14.120180.002151. [DOI] [PubMed] [Google Scholar]
  11. Hoyt M. A., Knight D. M., Das A., Miller H. I., Echols H. Control of phage lambda development by stability and synthesis of cII protein: role of the viral cIII and host hflA, himA and himD genes. Cell. 1982 Dec;31(3 Pt 2):565–573. doi: 10.1016/0092-8674(82)90312-9. [DOI] [PubMed] [Google Scholar]
  12. Hyman H. C., Honigman A. Transcription termination and processing sites in the bacteriophage lambda pL operon. J Mol Biol. 1986 May 5;189(1):131–141. doi: 10.1016/0022-2836(86)90386-4. [DOI] [PubMed] [Google Scholar]
  13. Kindler P., Keil T. U., Hofschneider P. H. Isolation and characterization of a ribonuclease 3 deficient mutant of Escherichia coli. Mol Gen Genet. 1973 Oct 16;126(1):53–59. doi: 10.1007/BF00333481. [DOI] [PubMed] [Google Scholar]
  14. Knight D. M., Echols H. The cIII gene and protein of bacteriophage lambda. J Mol Biol. 1983 Jan 25;163(3):505–510. doi: 10.1016/0022-2836(83)90072-4. [DOI] [PubMed] [Google Scholar]
  15. Mahajna J., Oppenheim A. B., Rattray A., Gottesman M. Translation initiation of bacteriophage lambda gene cII requires integration host factor. J Bacteriol. 1986 Jan;165(1):167–174. doi: 10.1128/jb.165.1.167-174.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mayford M., Weisblum B. Messenger RNA from Staphylococcus aureus that specifies macrolide-lincosamide-streptogramin resistance. Demonstration of its conformations and of the leader peptide it encodes. J Mol Biol. 1985 Oct 20;185(4):769–780. doi: 10.1016/0022-2836(85)90061-0. [DOI] [PubMed] [Google Scholar]
  17. Nikolaev N., Silengo L., Schlessinger D. Synthesis of a large precursor to ribosomal RNA in a mutant of Escherichia coli. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3361–3365. doi: 10.1073/pnas.70.12.3361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nomura M., Gourse R., Baughman G. Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem. 1984;53:75–117. doi: 10.1146/annurev.bi.53.070184.000451. [DOI] [PubMed] [Google Scholar]
  19. Robertson H. D. Escherichia coli ribonuclease III cleavage sites. Cell. 1982 Oct;30(3):669–672. doi: 10.1016/0092-8674(82)90270-7. [DOI] [PubMed] [Google Scholar]
  20. Régnier P., Portier C. Initiation, attenuation and RNase III processing of transcripts from the Escherichia coli operon encoding ribosomal protein S15 and polynucleotide phosphorylase. J Mol Biol. 1986 Jan 5;187(1):23–32. doi: 10.1016/0022-2836(86)90403-1. [DOI] [PubMed] [Google Scholar]
  21. Saito H., Richardson C. C. Processing of mRNA by ribonuclease III regulates expression of gene 1.2 of bacteriophage T7. Cell. 1981 Dec;27(3 Pt 2):533–542. doi: 10.1016/0092-8674(81)90395-0. [DOI] [PubMed] [Google Scholar]
  22. Salser W., Gesteland R. F., Bolle A. In vitro synthesis of bacteriophage lysozyme. Nature. 1967 Aug 5;215(5101):588–591. doi: 10.1038/215588a0. [DOI] [PubMed] [Google Scholar]
  23. Sanger F., Coulson A. R., Hong G. F., Hill D. F., Petersen G. B. Nucleotide sequence of bacteriophage lambda DNA. J Mol Biol. 1982 Dec 25;162(4):729–773. doi: 10.1016/0022-2836(82)90546-0. [DOI] [PubMed] [Google Scholar]
  24. Shapira S. K., Chou J., Richaud F. V., Casadaban M. J. New versatile plasmid vectors for expression of hybrid proteins coded by a cloned gene fused to lacZ gene sequences encoding an enzymatically active carboxy-terminal portion of beta-galactosidase. Gene. 1983 Nov;25(1):71–82. doi: 10.1016/0378-1119(83)90169-5. [DOI] [PubMed] [Google Scholar]
  25. Stark M. J., Gourse R. L., Jemiolo D. K., Dahlberg A. E. A mutation in an Escherichia coli ribosomal RNA operon that blocks the production of precursor 23 S ribosomal RNA by RNase III in vivo and in vitro. J Mol Biol. 1985 Mar 20;182(2):205–216. doi: 10.1016/0022-2836(85)90339-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES