Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Sep;84(18):6591–6595. doi: 10.1073/pnas.84.18.6591

Regulation of nicotinic acetylcholine receptor phosphorylation in rat myotubes by forskolin and cAMP.

K Miles, D T Anthony, L L Rubin, P Greengard, R L Huganir
PMCID: PMC299125  PMID: 2819883

Abstract

The nicotinic acetylcholine receptor (AcChoR) from rat myotubes prelabeled in culture with [32P]orthophosphate was isolated by acetylcholine affinity chromatography followed by immunoaffinity chromatography. Under basal conditions, the nicotinic AcChoR was shown to be phosphorylated in situ on the beta and delta subunits. Regulation of AcChoR phosphorylation by cAMP-dependent protein kinase was explored by the addition of forskolin or cAMP analogues to prelabeled cell cultures. Forskolin, an activator of adenylate cyclase, stimulated the phosphorylation of the delta subunit 20-fold over basal phosphorylation and induced phosphorylation of the alpha subunit. The effect of forskolin was dose dependent with a half-maximal response at 8 microM in the presence of 35 microM Ro 20-1724, a phosphodiesterase inhibitor. Stimulation of delta subunit phosphorylation was almost maximal within 5 min, whereas stimulation of alpha subunit phosphorylation was not maximal until 45 min after forskolin treatment. Stimulation of AcChoR phosphorylation by 8-benzylthioadenosine 3',5'-cyclic monophosphate was identical to that obtained by forskolin. Two-dimensional thermolytic phosphopeptide maps of the delta subunit revealed a single major phosphopeptide. These results correlate closely with the observed effects of forskolin on AcChoR desensitization in muscle and suggest that cAMP-dependent phosphorylation of the delta subunit increases the rate of AcChoR desensitization in rat myotubes.

Full text

PDF
6591

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albuquerque E. X., Deshpande S. S., Aracava Y., Alkondon M., Daly J. W. A possible involvement of cyclic AMP in the expression of desensitization of the nicotinic acetylcholine receptor. A study with forskolin and its analogs. FEBS Lett. 1986 Apr 7;199(1):113–120. doi: 10.1016/0014-5793(86)81235-2. [DOI] [PubMed] [Google Scholar]
  2. Boulter J., Evans K., Martin G., Mason P., Stengelin S., Goldman D., Heinemann S., Patrick J. Isolation and sequence of cDNA clones coding for the precursor to the gamma subunit of mouse muscle nicotinic acetylcholine receptor. J Neurosci Res. 1986;16(1):37–49. doi: 10.1002/jnr.490160106. [DOI] [PubMed] [Google Scholar]
  3. Browning M. D., Huganir R., Greengard P. Protein phosphorylation and neuronal function. J Neurochem. 1985 Jul;45(1):11–23. doi: 10.1111/j.1471-4159.1985.tb05468.x. [DOI] [PubMed] [Google Scholar]
  4. Eusebi F., Molinaro M., Zani B. M. Agents that activate protein kinase C reduce acetylcholine sensitivity in cultured myotubes. J Cell Biol. 1985 Apr;100(4):1339–1342. doi: 10.1083/jcb.100.4.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Froehner S. C., Douville K., Klink S., Culp W. J. Monoclonal antibodies to cytoplasmic domains of the acetylcholine receptor. J Biol Chem. 1983 Jun 10;258(11):7112–7120. [PubMed] [Google Scholar]
  6. Gordon A. S., Davis C. G., Milfay D., Diamond I. Phosphorylation of acetylcholine receptor by endogenous membrane protein kinase in receptor-enriched membranes of Torpedo californica. Nature. 1977 Jun 9;267(5611):539–540. doi: 10.1038/267539a0. [DOI] [PubMed] [Google Scholar]
  7. Huganir R. L., Delcour A. H., Greengard P., Hess G. P. Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature. 1986 Jun 19;321(6072):774–776. doi: 10.1038/321774a0. [DOI] [PubMed] [Google Scholar]
  8. Huganir R. L., Greengard P. cAMP-dependent protein kinase phosphorylates the nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1130–1134. doi: 10.1073/pnas.80.4.1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Huganir R. L., Miles K., Greengard P. Phosphorylation of the nicotinic acetylcholine receptor by an endogenous tyrosine-specific protein kinase. Proc Natl Acad Sci U S A. 1984 Nov;81(22):6968–6972. doi: 10.1073/pnas.81.22.6968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huganir R. L., Racker E. Endogenous and exogenous proteolysis of the acetylcholine receptor from Torpedo californica. J Supramol Struct. 1980;14(1):13–19. doi: 10.1002/jss.400140103. [DOI] [PubMed] [Google Scholar]
  11. LaPolla R. J., Mayne K. M., Davidson N. Isolation and characterization of a cDNA clone for the complete protein coding region of the delta subunit of the mouse acetylcholine receptor. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7970–7974. doi: 10.1073/pnas.81.24.7970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Laufer R., Changeux J. P. Calcitonin gene-related peptide elevates cyclic AMP levels in chick skeletal muscle: possible neurotrophic role for a coexisting neuronal messenger. EMBO J. 1987 Apr;6(4):901–906. doi: 10.1002/j.1460-2075.1987.tb04836.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Levitan I. B. Phosphorylation of ion channels. J Membr Biol. 1985;87(3):177–190. doi: 10.1007/BF01871217. [DOI] [PubMed] [Google Scholar]
  15. Merlie J. P., Sebbane R. Acetylcholine receptor subunits transit a precursor pool before acquiring alpha-bungarotoxin binding activity. J Biol Chem. 1981 Apr 25;256(8):3605–3608. [PubMed] [Google Scholar]
  16. Middleton P., Jaramillo F., Schuetze S. M. Forskolin increases the rate of acetylcholine receptor desensitization at rat soleus endplates. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4967–4971. doi: 10.1073/pnas.83.13.4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. New H. V., Mudge A. W. Calcitonin gene-related peptide regulates muscle acetylcholine receptor synthesis. 1986 Oct 30-Nov 5Nature. 323(6091):809–811. doi: 10.1038/323809a0. [DOI] [PubMed] [Google Scholar]
  18. Reynolds J. A., Karlin A. Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica. Biochemistry. 1978 May 30;17(11):2035–2038. doi: 10.1021/bi00604a001. [DOI] [PubMed] [Google Scholar]
  19. Schweinsberg P. D., Loo T. L. Simultaneous analysis of ATP, ADP, AMP, and other purines in human erythrocytes by high-performance liquid chromatography. J Chromatogr. 1980 Jan 11;181(1):103–107. doi: 10.1016/s0378-4347(00)81276-1. [DOI] [PubMed] [Google Scholar]
  20. Seamon K. B., Daly J. W. Forskolin: its biological and chemical properties. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1986;20:1–150. [PubMed] [Google Scholar]
  21. Sibley D. R., Benovic J. L., Caron M. G., Lefkowitz R. J. Regulation of transmembrane signaling by receptor phosphorylation. Cell. 1987 Mar 27;48(6):913–922. doi: 10.1016/0092-8674(87)90700-8. [DOI] [PubMed] [Google Scholar]
  22. Smith M. M., Merlie J. P., Lawrence J. C., Jr Regulation of phosphorylation of nicotinic acetylcholine receptors in mouse BC3H1 myocytes. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6601–6605. doi: 10.1073/pnas.84.18.6601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stroud R. M., Finer-Moore J. Acetylcholine receptor structure, function, and evolution. Annu Rev Cell Biol. 1985;1:317–351. doi: 10.1146/annurev.cb.01.110185.001533. [DOI] [PubMed] [Google Scholar]
  24. Takai T., Noda M., Mishina M., Shimizu S., Furutani Y., Kayano T., Ikeda T., Kubo T., Takahashi H., Takahashi T. Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle. 1985 Jun 27-Jul 3Nature. 315(6022):761–764. doi: 10.1038/315761a0. [DOI] [PubMed] [Google Scholar]
  25. Takami K., Kawai Y., Shiosaka S., Lee Y., Girgis S., Hillyard C. J., MacIntyre I., Emson P. C., Tohyama M. Immunohistochemical evidence for the coexistence of calcitonin gene-related peptide- and choline acetyltransferase-like immunoreactivity in neurons of the rat hypoglossal, facial and ambiguus nuclei. Brain Res. 1985 Mar 4;328(2):386–389. doi: 10.1016/0006-8993(85)91055-8. [DOI] [PubMed] [Google Scholar]
  26. Teichberg V. I., Sobel A., Changeux J. P. In vitro phosphorylation of the acetylcholine receptor. Nature. 1977 Jun 9;267(5611):540–542. doi: 10.1038/267540a0. [DOI] [PubMed] [Google Scholar]
  27. Zani B. M., Grassi F., Molinaro M., Monaco L., Eusebi F. Cyclic AMP regulates the life time of acetylcholine-activated channels in cultured myotubes. Biochem Biophys Res Commun. 1986 Oct 15;140(1):243–249. doi: 10.1016/0006-291x(86)91082-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES