Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Oct;84(19):6644–6648. doi: 10.1073/pnas.84.19.6644

UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases.

J M Gale 1, K A Nissen 1, M J Smerdon 1
PMCID: PMC299139  PMID: 3477794

Abstract

We have determined the distribution of the major UV-induced photoproducts in nucleosome core DNA using the 3'----5' exonuclease activity of T4 DNA polymerase, which has been shown to stop digestion immediately 3' to UV-induced pyrimidine dimers. This assay is extremely sensitive since all DNA fragments without photoproducts (background) are reduced to small oligonucleotides, which can be separated from those fragments containing photoproducts. The results show that the distribution of UV-induced photoproducts (primarily cyclobutane dipyrimidines) is not uniform throughout core DNA but displays a striking 10.3 (+/- 0.1) base periodicity. Furthermore, this characteristic distribution of photoproducts was obtained regardless of whether nucleosome core DNA was isolated from UV-irradiated intact chromatin fibers, histone H1-depleted chromatin fibers, isolated mononucleosomes, or cells in culture. The yield of pyrimidine dimers along the DNA seems to be modulated in a manner that reflects structural features of the nucleosome unit, possibly core histone-DNA interactions, since this pattern was not obtained for UV-irradiated core DNA either free in solution or bound tightly to calcium phosphate crystals. Based on their location relative to DNase I cutting sites, the sites of maximum pyrimidine dimer formation in core DNA mapped to positions where the phosphate backbone is farthest from the core histone surface. These results indicate that within the core region of nucleosomes, histone-DNA interactions significantly alter the quantum yield of cyclobutane dipyrimidines, possibly by restraining conformational changes in the DNA helix required for formation of these photoproducts.

Full text

PDF
6644

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker M. M., Wang J. C. Use of light for footprinting DNA in vivo. Nature. 1984 Jun 21;309(5970):682–687. doi: 10.1038/309682a0. [DOI] [PubMed] [Google Scholar]
  2. Bohr V. A., Smith C. A., Okumoto D. S., Hanawalt P. C. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell. 1985 Feb;40(2):359–369. doi: 10.1016/0092-8674(85)90150-3. [DOI] [PubMed] [Google Scholar]
  3. Bourre F., Renault G., Seawell P. C., Sarasin A. Distribution of ultraviolet-induced lesions in simian virus 40 DNA. Biochimie. 1985 Mar-Apr;67(3-4):293–299. doi: 10.1016/s0300-9084(85)80071-7. [DOI] [PubMed] [Google Scholar]
  4. Brash D. E., Haseltine W. A. UV-induced mutation hotspots occur at DNA damage hotspots. Nature. 1982 Jul 8;298(5870):189–192. doi: 10.1038/298189a0. [DOI] [PubMed] [Google Scholar]
  5. Cartwright I. L., Abmayr S. M., Fleischmann G., Lowenhaupt K., Elgin S. C., Keene M. A., Howard G. C. Chromatin structure and gene activity: the role of nonhistone chromosomal proteins. CRC Crit Rev Biochem. 1982;13(1):1–86. doi: 10.3109/10409238209108709. [DOI] [PubMed] [Google Scholar]
  6. Chaconas G., van de Sande J. H. 5'-32P labeling of RNA and DNA restriction fragments. Methods Enzymol. 1980;65(1):75–85. doi: 10.1016/s0076-6879(80)65012-5. [DOI] [PubMed] [Google Scholar]
  7. Chan G. L., Doetsch P. W., Haseltine W. A. Cyclobutane pyrimidine dimers and (6-4) photoproducts block polymerization by DNA polymerase I. Biochemistry. 1985 Oct 8;24(21):5723–5728. doi: 10.1021/bi00342a006. [DOI] [PubMed] [Google Scholar]
  8. Cohn S. M., Lieberman M. W. The distribution of DNA excision-repair sites in human diploid fibroblasts following ultraviolet irradiation. J Biol Chem. 1984 Oct 25;259(20):12463–12469. [PubMed] [Google Scholar]
  9. Doetsch P. W., Chan G. L., Haseltine W. A. T4 DNA polymerase (3'-5') exonuclease, an enzyme for the detection and quantitation of stable DNA lesions: the ultraviolet light example. Nucleic Acids Res. 1985 May 10;13(9):3285–3304. doi: 10.1093/nar/13.9.3285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gordon L. K., Haseltine W. A. Quantitation of cyclobutane pyrimidine dimer formation in double- and single-stranded DNA fragments of defined sequence. Radiat Res. 1982 Jan;89(1):99–112. [PubMed] [Google Scholar]
  11. Gregg K., Mansbridge J. Frequency of U.V. induced protein-DNA crosslinks in cell lines of different sensitivities. Int J Radiat Biol Relat Stud Phys Chem Med. 1981 Apr;39(4):367–375. doi: 10.1080/09553008114550471. [DOI] [PubMed] [Google Scholar]
  12. Hagerman P. J. Sequence dependence of the curvature of DNA: a test of the phasing hypothesis. Biochemistry. 1985 Dec 3;24(25):7033–7037. doi: 10.1021/bi00346a001. [DOI] [PubMed] [Google Scholar]
  13. Ichimura S., Mita K., Zama M. Essential role of arginine residues in the folding of deoxyribonucleic acid into nucleosome cores. Biochemistry. 1982 Oct 12;21(21):5329–5334. doi: 10.1021/bi00264a032. [DOI] [PubMed] [Google Scholar]
  14. Igo-Kemenes T., Hörz W., Zachau H. G. Chromatin. Annu Rev Biochem. 1982;51:89–121. doi: 10.1146/annurev.bi.51.070182.000513. [DOI] [PubMed] [Google Scholar]
  15. Klug A., Lutter L. C., Rhodes D. Helical periodicity of DNA on and off the nucleosome as probed by nucleases. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 1):285–292. doi: 10.1101/sqb.1983.047.01.034. [DOI] [PubMed] [Google Scholar]
  16. Lan S. Y., Smerdon M. J. A nonuniform distribution of excision repair synthesis in nucleosome core DNA. Biochemistry. 1985 Dec 17;24(26):7771–7783. doi: 10.1021/bi00347a041. [DOI] [PubMed] [Google Scholar]
  17. Leadon S. A., Hanawalt P. C. Ultraviolet irradiation of monkey cells enhances the repair of DNA adducts in alpha DNA. Carcinogenesis. 1984 Nov;5(11):1505–1510. doi: 10.1093/carcin/5.11.1505. [DOI] [PubMed] [Google Scholar]
  18. Lee K. S., Mandelkern M., Crothers D. M. Solution structural studies of chromatin fibers. Biochemistry. 1981 Mar 17;20(6):1438–1445. doi: 10.1021/bi00509a006. [DOI] [PubMed] [Google Scholar]
  19. Libertini L. J., Small E. W. Salt induced transitions of chromatin core particles studied by tyrosine fluorescence anisotropy. Nucleic Acids Res. 1980 Aug 25;8(16):3517–3534. doi: 10.1093/nar/8.16.3517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lippke J. A., Gordon L. K., Brash D. E., Haseltine W. A. Distribution of UV light-induced damage in a defined sequence of human DNA: detection of alkaline-sensitive lesions at pyrimidine nucleoside-cytidine sequences. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3388–3392. doi: 10.1073/pnas.78.6.3388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lutter L. C. Kinetic analysis of deoxyribonuclease I cleavages in the nucleosome core: evidence for a DNA superhelix. J Mol Biol. 1978 Sep 15;124(2):391–420. doi: 10.1016/0022-2836(78)90306-6. [DOI] [PubMed] [Google Scholar]
  22. Lutter L. C. Precise location of DNase I cutting sites in the nucleosome core determined by high resolution gel electrophoresis. Nucleic Acids Res. 1979 Jan;6(1):41–56. doi: 10.1093/nar/6.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  24. McGhee J. D., Felsenfeld G. Another potential artifact in the study of nucleosome phasing by chromatin digestion with micrococcal nuclease. Cell. 1983 Apr;32(4):1205–1215. doi: 10.1016/0092-8674(83)90303-3. [DOI] [PubMed] [Google Scholar]
  25. Miller J. H. Mutagenic specificity of ultraviolet light. J Mol Biol. 1985 Mar 5;182(1):45–65. doi: 10.1016/0022-2836(85)90026-9. [DOI] [PubMed] [Google Scholar]
  26. Mita K., Ichimura S., Zama M. Kinetics of chemical modification of arginine and lysine residues in calf thymus histone H1. Biopolymers. 1981 Jun;20(6):1103–1112. doi: 10.1002/bip.1981.360200602. [DOI] [PubMed] [Google Scholar]
  27. Niggli H. J., Cerutti P. A. Nucleosomal distribution of thymine photodimers following far- and near-ultraviolet irradiation. Biochem Biophys Res Commun. 1982 Apr 14;105(3):1215–1223. doi: 10.1016/0006-291x(82)91098-1. [DOI] [PubMed] [Google Scholar]
  28. Paulson J. R. Sulfhydryl reagents prevent dephosphorylation and proteolysis of histones in isolated HeLa metaphase chromosomes. Eur J Biochem. 1980 Oct;111(1):189–197. doi: 10.1111/j.1432-1033.1980.tb06092.x. [DOI] [PubMed] [Google Scholar]
  29. Peak J. G., Peak M. J., Sikorski R. S., Jones C. A. Induction of DNA-protein crosslinks in human cells by ultraviolet and visible radiations: action spectrum. Photochem Photobiol. 1985 Mar;41(3):295–302. doi: 10.1111/j.1751-1097.1985.tb03488.x. [DOI] [PubMed] [Google Scholar]
  30. Pearlman D. A., Holbrook S. R., Pirkle D. H., Kim S. H. Molecular models for DNA damaged by photoreaction. Science. 1985 Mar 15;227(4692):1304–1308. doi: 10.1126/science.3975615. [DOI] [PubMed] [Google Scholar]
  31. Prunell A., Kornberg R. D., Lutter L., Klug A., Levitt M., Crick F. H. Periodicity of deoxyribonuclease I digestion of chromatin. Science. 1979 May 25;204(4395):855–858. doi: 10.1126/science.441739. [DOI] [PubMed] [Google Scholar]
  32. Rao S. N., Keepers J. W., Kollman P. The structure of d(CGCGAAT[]TCGCG) . d(CGCGAATTCGCG); the incorporation of a thymine photodimer into a B-DNA helix. Nucleic Acids Res. 1984 Jun 11;12(11):4789–4807. doi: 10.1093/nar/12.11.4789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Richmond T. J., Finch J. T., Rushton B., Rhodes D., Klug A. Structure of the nucleosome core particle at 7 A resolution. Nature. 1984 Oct 11;311(5986):532–537. doi: 10.1038/311532a0. [DOI] [PubMed] [Google Scholar]
  34. Riley D. E. Deoxyribonuclease I generates single-stranded gaps in chromatin deoxyribonucleic acid. Biochemistry. 1980 Jun 24;19(13):2977–2992. doi: 10.1021/bi00554a024. [DOI] [PubMed] [Google Scholar]
  35. Satchwell S. C., Drew H. R., Travers A. A. Sequence periodicities in chicken nucleosome core DNA. J Mol Biol. 1986 Oct 20;191(4):659–675. doi: 10.1016/0022-2836(86)90452-3. [DOI] [PubMed] [Google Scholar]
  36. Setlow R. B., Regan J. D., German J., Carrier W. L. Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to their DNA. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1035–1041. doi: 10.1073/pnas.64.3.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shick V. V., Belyavsky A. V., Mirzabekov A. D. Primary organization of nucleosomes. Interaction of non-histone high mobility group proteins 14 and 17 with nucleosomes, as revealed by DNA-protein crosslinking and immunoaffinity isolation. J Mol Biol. 1985 Sep 20;185(2):329–339. doi: 10.1016/0022-2836(85)90407-3. [DOI] [PubMed] [Google Scholar]
  38. Smerdon M. J., Kastan M. B., Lieberman M. W. Distribution of repair-incorporated nucleotides and nucleosome rearrangement in the chromatin of normal and xeroderma pigmentosum human fibroblasts. Biochemistry. 1979 Aug 21;18(17):3732–3739. doi: 10.1021/bi00584a014. [DOI] [PubMed] [Google Scholar]
  39. Smerdon M. J., Lan S. Y., Calza R. E., Reeves R. Sodium butyrate stimulates DNA repair in UV-irradiated normal and xeroderma pigmentosum human fibroblasts. J Biol Chem. 1982 Nov 25;257(22):13441–13447. [PubMed] [Google Scholar]
  40. Smerdon M. J., Lieberman M. W. Distribution within chromatin of deoxyribonucleic acid repair synthesis occurring at different times after ultraviolet radiation. Biochemistry. 1980 Jun 24;19(13):2992–3000. doi: 10.1021/bi00554a025. [DOI] [PubMed] [Google Scholar]
  41. Snapka R. M., Linn S. Efficiency of formation of pyrimidine dimers in SV40 chromatin in vitro. Biochemistry. 1981 Jan 6;20(1):68–72. doi: 10.1021/bi00504a012. [DOI] [PubMed] [Google Scholar]
  42. Sutherland B. M., Sutherland J. C. Inhibition of pyrimidine dimer formation in DNA by cationic molecules: role of energy transfer. Biophys J. 1969 Aug;9(8):1045–1055. doi: 10.1016/S0006-3495(69)86435-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ulanovsky L., Bodner M., Trifonov E. N., Choder M. Curved DNA: design, synthesis, and circularization. Proc Natl Acad Sci U S A. 1986 Feb;83(4):862–866. doi: 10.1073/pnas.83.4.862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Williams J. I., Friedberg E. C. Deoxyribonucleic acid excision repair in chromatin after ultraviolet irradiation of human fibroblasts in culture. Biochemistry. 1979 Sep 4;18(18):3965–3972. doi: 10.1021/bi00585a019. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES