Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Oct;84(19):6929–6933. doi: 10.1073/pnas.84.19.6929

Target-controlled differentiation of axon terminals and synaptic organization.

G Campbell 1, D O Frost 1
PMCID: PMC299198  PMID: 2443913

Abstract

These experiments investigate the processes regulating the morphological differentiation of synaptic connections. Electron microscopy showed that the terminal boutons and synaptic complexes of retinal afferent axons in the main thalamic visual nucleus, the dorsal lateral geniculate nucleus, differ in their morphology from those of ascending afferent axons in the main thalamic somatosensory (ventrobasal) nucleus. Developing retinal ganglion cell axons in hamsters were made to project permanently to the ventrobasal nucleus, rather than to the lateral geniculate nucleus. With respect to most of the ultrastructural features examined, the terminals and synaptic complexes of mature, anterogradely labeled retino-ventrobasal axons more closely resembled those of normal somatosensory afferents to the ventrobasal nucleus than they did those of normal retinofugal axons within the lateral geniculate nucleus. These results suggest that the ultrastructural differentiation of axon terminals and synaptic complexes is regulated largely by the target environment, although some features appear to be intrinsic to the afferent axons themselves.

Full text

PDF
6929

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Black I. B., Adler J. E., Dreyfus C. F., Jonakait G. M., Katz D. M., LaGamma E. F., Markey K. M. Neurotransmitter plasticity at the molecular level. Science. 1984 Sep 21;225(4668):1266–1270. doi: 10.1126/science.6147894. [DOI] [PubMed] [Google Scholar]
  2. COLONNIER M., GUILLERY R. W. SYNAPTIC ORGANIZATION IN THE LATERAL GENICULATE NUCLEUS OF THE MONKEY. Z Zellforsch Mikrosk Anat. 1964 Apr 9;62:333–355. doi: 10.1007/BF00339284. [DOI] [PubMed] [Google Scholar]
  3. Campbell G., So K. F., Lieberman A. R. Normal postnatal development of retinogeniculate axons and terminals and identification of inappropriately-located transient synapses: electron microscope studies of horseradish peroxidase-labelled retinal axons in the hamster. Neuroscience. 1984 Nov;13(3):743–759. doi: 10.1016/0306-4522(84)90093-9. [DOI] [PubMed] [Google Scholar]
  4. Chan-Palay V., Palay S. L. The synapse en marron between golgi II neurons and mossy fibers in the rat's cerebellar cortex. Z Anat Entwicklungsgesch. 1971;133(3):274–287. doi: 10.1007/BF00519303. [DOI] [PubMed] [Google Scholar]
  5. Chan-Palay V. The recurrent collaterals of Purkinje cell axons: a correlated study of the rat's cerebellar cortex with electron microscopy and the Golgi method. Z Anat Entwicklungsgesch. 1971;134(2):200–234. doi: 10.1007/BF00519300. [DOI] [PubMed] [Google Scholar]
  6. Cullen M. J., Kaiserman-Abramof I. R. Cytological organization of the dorsal lateral geniculate nuclei in mutant anophthalmic and postnatally enucleated mice. J Neurocytol. 1976 Aug;5(4):407–424. doi: 10.1007/BF01181648. [DOI] [PubMed] [Google Scholar]
  7. Easter S. S., Jr, Purves D., Rakic P., Spitzer N. C. The changing view of neural specificity. Science. 1985 Nov 1;230(4725):507–511. doi: 10.1126/science.4048944. [DOI] [PubMed] [Google Scholar]
  8. Frost D. O. Anomalous visual connections to somatosensory and auditory systems following brain lesions in early life. Brain Res. 1982 Apr;255(4):627–635. doi: 10.1016/0165-3806(82)90058-x. [DOI] [PubMed] [Google Scholar]
  9. Frost D. O. Axonal growth and target selection during development: retinal projections to the ventrobasal complex and other "nonvisual" structures in neonatal Syrian hamsters. J Comp Neurol. 1984 Dec 20;230(4):576–592. doi: 10.1002/cne.902300407. [DOI] [PubMed] [Google Scholar]
  10. Frost D. O. Development of anomalous retinal projections to nonvisual thalamic nuclei in Syrian hamsters: a quantitative study. J Comp Neurol. 1986 Oct 1;252(1):95–105. doi: 10.1002/cne.902520106. [DOI] [PubMed] [Google Scholar]
  11. Frost D. O., Metin C. Induction of functional retinal projections to the somatosensory system. Nature. 1985 Sep 12;317(6033):162–164. doi: 10.1038/317162a0. [DOI] [PubMed] [Google Scholar]
  12. Frost D. O. Orderly anomalous retinal projections to the medial geniculate, ventrobasal, and lateral posterior nuclei of the hamster. J Comp Neurol. 1981 Dec 1;203(2):227–256. doi: 10.1002/cne.902030206. [DOI] [PubMed] [Google Scholar]
  13. Hanker J. S., Yates P. E., Metz C. B., Rustioni A. A new specific, sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase. Histochem J. 1977 Nov;9(6):789–792. doi: 10.1007/BF01003075. [DOI] [PubMed] [Google Scholar]
  14. Henry M. A., Westrum L. E., Johnson L. R. Ultrastructure of transganglionic HRP transport in cat trigeminal system. Brain Res. 1985 May 20;334(2):255–266. doi: 10.1016/0006-8993(85)90217-3. [DOI] [PubMed] [Google Scholar]
  15. Kalil R. E., Dubin M. W., Scott G., Stark L. A. Elimination of action potentials blocks the structural development of retinogeniculate synapses. Nature. 1986 Sep 11;323(6084):156–158. doi: 10.1038/323156a0. [DOI] [PubMed] [Google Scholar]
  16. Kane E. C. Octopus cells in the cochlear nucleus of the cat: heterotypic synapses upon homeotypic neurons. Int J Neurosci. 1973;5(6):251–279. doi: 10.3109/00207457309149485. [DOI] [PubMed] [Google Scholar]
  17. Le Douarin N. M. The ontogeny of the neural crest in avian embryo chimaeras. Nature. 1980 Aug 14;286(5774):663–669. doi: 10.1038/286663a0. [DOI] [PubMed] [Google Scholar]
  18. Lieberman A. R., Webster K. E. Aspects of the synaptic organization of intrinsic neurons in the dorsal lateral geniculate nucleus. An ultrastructural study of the normal and of the experimentally deafferented nucleus in the rat. J Neurocytol. 1974 Dec;3(6):677–710. doi: 10.1007/BF01097191. [DOI] [PubMed] [Google Scholar]
  19. Lieberman A. R., Webster K. E. Presynaptic dendrites and a distinctive class of synaptic vesicle in the rat dorsal lateral geniculate nucleus. Brain Res. 1972 Jul 13;42(1):196–200. doi: 10.1016/0006-8993(72)90053-4. [DOI] [PubMed] [Google Scholar]
  20. Linden R., Perry V. H. Massive retinotectal projection in rats. Brain Res. 1983 Aug 1;272(1):145–149. doi: 10.1016/0006-8993(83)90371-2. [DOI] [PubMed] [Google Scholar]
  21. Lund R. D. Synaptic patterns of the superficial layers of the superior colliculus of the rat. J Comp Neurol. 1969 Feb;135(2):179–208. doi: 10.1002/cne.901350205. [DOI] [PubMed] [Google Scholar]
  22. Lund R. D., Webster K. E. Thalamic afferents from the dorsal column nuclei. An experimental anatomical study in the rat. J Comp Neurol. 1967 Aug;130(4):301–312. doi: 10.1002/cne.901300403. [DOI] [PubMed] [Google Scholar]
  23. Matthews M. A., Narayanan C. H., Narayanan Y., Onge M. F. Neuronal maturation and synaptogenesis in the rat ventrobasal complex: alignment with developmental changes in rate and severity of axon reaction. J Comp Neurol. 1977 Jun 15;173(4):745–772. doi: 10.1002/cne.901730407. [DOI] [PubMed] [Google Scholar]
  24. McAllister J. P., Wells J. The structural organization of the ventral posterolateral nucleus in the rat. J Comp Neurol. 1981 Apr 1;197(2):271–301. doi: 10.1002/cne.901970208. [DOI] [PubMed] [Google Scholar]
  25. Mesulam M. M. Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem. 1978 Feb;26(2):106–117. doi: 10.1177/26.2.24068. [DOI] [PubMed] [Google Scholar]
  26. Robson J. A., Mason C. A. The synaptic organization of terminals traced from individual labeled retino-geniculate axons in the cat. Neuroscience. 1979;4(1):99–111. doi: 10.1016/0306-4522(79)90220-3. [DOI] [PubMed] [Google Scholar]
  27. Schönitzer K., Holländer H. Anterograde tracing of horseradish peroxidase (HRP) with the electron microscope using the tetramethylbenzidine reaction. J Neurosci Methods. 1981 Dec;4(4):373–383. doi: 10.1016/0165-0270(81)90007-8. [DOI] [PubMed] [Google Scholar]
  28. So K. F., Campbell G., Lieberman A. R. Synaptic organization of the dorsal lateral geniculate nucleus in the adult hamster. An electron microscope study using degeneration and horseradish peroxidase tracing techniques. Anat Embryol (Berl) 1985;171(2):223–234. doi: 10.1007/BF00341417. [DOI] [PubMed] [Google Scholar]
  29. Spacek J., Lieberman A. R. Ultrastructure and three-dimensional organization of synaptic glomeruli in rat somatosensory thalamus. J Anat. 1974 Jul;117(Pt 3):487–516. [PMC free article] [PubMed] [Google Scholar]
  30. Winfield D. A., Powell T. P. An electron-microscopical study of the postnatal development of the lateral geniculate nucleus in the normal kitten and after eyelid suture. Proc R Soc Lond B Biol Sci. 1980 Nov 19;210(1179):197–210. doi: 10.1098/rspb.1980.0129. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES