Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Nov;84(21):7393–7397. doi: 10.1073/pnas.84.21.7393

Reversible, calcium-dependent membrane association of human leukocyte 5-lipoxygenase.

C A Rouzer 1, B Samuelsson 1
PMCID: PMC299302  PMID: 3118366

Abstract

Maximal activity of human leukocyte 5-lipoxygenase requires Ca2+, ATP, a microsomal membrane preparation, and two cytosolic stimulatory factors. We report here some effects of Ca2+ on the physical properties of the 5-lipoxygenase. When leukocytes were homogenized in the presence of 2 mM EDTA, 5-lipoxygenase was found to be a soluble enzyme. However, when Ca2+ was added to homogenization buffers at 0-1 mM in excess of EDTA, increasing quantities of the enzyme were recovered in the microsomal membrane fraction (100,000 X g pellet). The membrane-associated enzyme was resolubilized by washing pellet preparations in buffers containing 2 mM EDTA and was partially purified by anion-exchange chromatography. Studies of the stimulatory-factor requirements of the membrane-associated, resolubilized, and partially purified enzyme indicated that one of the cytosolic 5-lipoxygenase stimulatory factors exhibited a reversible, Ca2+-dependent membrane association, similar to that of the enzyme itself. Ca2+ also caused a destabilization of the 5-lipoxygenase. Homogenates prepared in the presence of Ca2+ contained lower total enzyme activity, and retention of activity in these samples over time was also diminished.

Full text

PDF
7393

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borgeat P., Samuelsson B. Arachidonic acid metabolism in polymorphonuclear leukocytes: effects of ionophore A23187. Proc Natl Acad Sci U S A. 1979 May;76(5):2148–2152. doi: 10.1073/pnas.76.5.2148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Goetze A. M., Fayer L., Bouska J., Bornemeier D., Carter G. W. Purification of a mammalian 5-lipoxygenase from rat basophilic leukemia cells. Prostaglandins. 1985 May;29(5):689–701. doi: 10.1016/0090-6980(85)90130-3. [DOI] [PubMed] [Google Scholar]
  4. Hogaboom G. K., Cook M., Newton J. F., Varrichio A., Shorr R. G., Sarau H. M., Crooke S. T. Purification, characterization, and structural properties of a single protein from rat basophilic leukemia (RBL-1) cells possessing 5-lipoxygenase and leukotriene A4 synthetase activities. Mol Pharmacol. 1986 Dec;30(6):510–519. [PubMed] [Google Scholar]
  5. Rouzer C. A., Matsumoto T., Samuelsson B. Single protein from human leukocytes possesses 5-lipoxygenase and leukotriene A4 synthase activities. Proc Natl Acad Sci U S A. 1986 Feb;83(4):857–861. doi: 10.1073/pnas.83.4.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Rouzer C. A., Samuelsson B. On the nature of the 5-lipoxygenase reaction in human leukocytes: enzyme purification and requirement for multiple stimulatory factors. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6040–6044. doi: 10.1073/pnas.82.18.6040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rouzer C. A., Shimizu T., Samuelsson B. On the nature of the 5-lipoxygenase reaction in human leukocytes: characterization of a membrane-associated stimulatory factor. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7505–7509. doi: 10.1073/pnas.82.22.7505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rådmark O., Shimizu T., Jörnvall H., Samuelsson B. Leukotriene A4 hydrolase in human leukocytes. Purification and properties. J Biol Chem. 1984 Oct 25;259(20):12339–12345. [PubMed] [Google Scholar]
  9. Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science. 1983 May 6;220(4597):568–575. doi: 10.1126/science.6301011. [DOI] [PubMed] [Google Scholar]
  10. Shimizu T., Izumi T., Seyama Y., Tadokoro K., Rådmark O., Samuelsson B. Characterization of leukotriene A4 synthase from murine mast cells: evidence for its identity to arachidonate 5-lipoxygenase. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4175–4179. doi: 10.1073/pnas.83.12.4175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ueda N., Kaneko S., Yoshimoto T., Yamamoto S. Purification of arachidonate 5-lipoxygenase from porcine leukocytes and its reactivity with hydroperoxyeicosatetraenoic acids. J Biol Chem. 1986 Jun 15;261(17):7982–7988. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES